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Chapter 1

Introduction

This describes the implementation the AlloppNET model for arbitrary numbers of diploids,
tetraploids, and hybridizations.

The code has been changed quite a bit 2012-05-04 to cater for the extensions. Mainly

• The network is divided into diploid and tetraploid parts differently. See section 1.2.

• The ‘move legs’ MCMC move no longer used, but is replaced by changes to diploid history.

• New move to change the number of hybridizations (ie number of tetraploid trees).

• I no longer use SimpleTree to implement the diploid or tetraploid trees.

• I have removed the ‘no diploids’ case.

• In some places I have specialised more to tetraploids (no hexaploids etc).

• In terms of classes, since April/May 2012 AlloppFootLinks, AlloppLegLink,
AlloppTreeLeg have disappeared, but AlloppDiploidHistory has become more
complicated. AlloppNetworkNodeSlide has become larger and swallowed AlloppMoveLegs.
Operators AlloppChangeNumHybridizations and AlloppHybPopSizesScale added.

• Some unit tests no longer work (or aren’t relevant).

1.1 Jargon

I have started using the words leg, foot, and union to mean special things. Also, I use diploid
history, MNL move and hyb-tip.

The species network is composed of homoploid trees, which are joined together. A higher ploidy
tree is joined to a lower ploidy tree with one or more legs. The point where a leg meets the branch
of the lower ploidy tree is a foot. In the new (Aug 2012) setup, the feet are represented as
hyb-tips in the diploid history. See section 1.2.

A union is a set of indices where each index represents a species, or more often, a species and a
sequence. For example, if a, b, c, ... are species, 1, 2, 3, ... are individuals and A, B, C, ... label
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sequences, so that a single sequence (taxon) in an alignment might be c2B, then a union can
represent a set of elements like {aA, bA, bC}. The identity of individuals 1,2,3, ... is ignored. At a
tip in a gene tree, or a tip in the multi-labelled tree, there will be a single species and a single
sequence, like aA or bC. At internal nodes, there are sets of them, each one being a union of its
childrens’ sets. The union at a node is unique to that node in the multi-labelled tree (with one
exception near the root in the no-diploids case). Unions can therefore be used to identify nodes. In
the species network, the identity of the sequence is lost, but a similar mechanism is used.

A MNL move is a MCMC move for trees based on the ideas of Mau, Newton and Larget (1999).
Similar moves are used in *BEAST. The tree is randomly oriented (so all nodes ordered left to
right), a random internal node is chosen and its height altered, then the tree is reconstructed.

1.2 Network structure

T1 T2 T3

D

r1

r2

b1

b3

b2
s7

s8

s6

r3

s5
s3

s2

s1

s4

Figure 1.1: Network structure: 4 diploids and 6 tetraploids in three subtrees

[History: For the single hybridization case, I had a simple tree for the diploids with fairly
complicated legs in the (single) tetraploid tree specifying which diploid branches it joined to. I now
divide the network up with more information in the diploid part, as described next.]

The species network is composed of one or more trees representing tetraploid (sub)trees, and a
diploid history. The latter is a tree with some tips representing diploid species at present time and
others representing the points at which hybridization (to form a tetraploid) occurs. The latter are
in pairs and have times before present, and I call them ‘hydridization tips’ or ‘hyb-tips’. From the
point of view of a tetraploid tree these hyb-tips are feet at the ends of legs.

See Fig 1.1. Symbols s1 . . . s8 denote speciation nodes in the diploid history, r1 . . . r3s denote
speciation nodes in tetraploid subtrees, and b1, . . . b3 indicate pairs of hybridization tips. D is the
diploid history with 3 tips at present and 3 pairs of hyb-tips. There are three tetraploid subtrees
T1, T2, T3 with 1,2,3 tips respectively. s5, s6, s7, s8 are feet.
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1.3 AlloppNET formula

1. W is the network topology and node times.The multi-labelled tree derived from it is MW .

2. θ is the population parameters. See 2012-08-06-popvalues-to-nodes.pdf for details.

3. λ is the parameters for W , that is, the topology and node times. λ could consist of a
speciation rate, an extinction rate, and a hybridization rate.

4. η is the population scaling factor, appearing in a hyperprior for θ

5. n is the number of gene trees.

6. τi is the i’th gene tree topology and node times.

7. αi is all the other parameters belonging to the i’th gene tree: parameters for site rate
heterogeneity, substitution model, branch rate model, root model.

8. gi is (τi, αi), that is, all the parameters for the i’th gene tree.

9. γi is the permutations of sequences within individuals for the i’th gene.

10. di is the sequence data for the i’th gene.

τ = (τ1, ...τn), and similarly for α, g, γ, d.

Pr(W, θ, g, γ|d) ∝ Pr(W |λ) Pr(λ)× (1.1)

Pr(θ|η) Pr(η)× (1.2)

Pr(γ)× (1.3)∏
i

Pr(τi|MW , θ, γi)× (1.4)∏
i

Pr(di|gi) (1.5)

1. Pr(W |λ) Pr(λ) is the network prior: the probability of W before seeing any molecular data.

2. Pr(θ|η) Pr(η) is the population prior.

3. Pr(γ) is the permutation prior. Quite likely uniform, so can be ommitted.

4. Pr(τi|MW , θ, γi) is the probability of τi, when permuted by γi, fitting into the multi-labelled
tree MW with populations determined by θ. Note that this probability does not depend on
αi. See below for what permuting τi by γi means.

5. Pr(di|gi) = Pr(di|τi, αi) is the ‘Felsenstein likelihood’ of the data for the i’th gene given the
i’th gene tree.

I previously thought of

Pr(di|gi, γi) Pr(gi|W, θ)

as
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Pr(γi(di)|gi) Pr(gi|W )

so that the γi are thought of as permuting the sequence data di. This doesn’t work well in
implementation in BEAST: lots of existing code does not expect sequences to be swapped around.
It would be possible to regard the γi as specifying a topological change in a gene tree (eg two
terminal branches would be swapped). However, it seems simplest to regard γi as permuting the
tip labels of the gene tree. The sequences attached to a tip don’t change, nor does the gene tree
topology. Instead, the way in which the sequences are assigned tips in the multi-labelled tree W is
changed. Thus one can write:

Pr(τi|W, θ, γi) = Pr(γi(τi)|W, θ)
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Chapter 2

Overall code structure of
AlloppNET

List of classes, and tests.

2.1 List of classes

2.1.1 Parsers in dr.evomodelxml.operators

• AlloppChangeNumHybridizationsParser

• AlloppHybPopSizesScaleParser

• AlloppNetworkNodeSlideParser

• AlloppSequenceReassignmentParser

2.1.2 Parsers in dr.evomodelxml.speciation

• AlloppMSCoalescentParser

• AlloppNetworkPriorModelParser

• AlloppNetworkPriorParser

• AlloppSpeciesBindingsApSpInfoParser

• AlloppSpeciesBindingsIndividualParser

• AlloppSpeciesBindingsParser

• AlloppSpeciesNetworkModelParser
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2.1.3 Classes in dr.evomodel.operators

• AlloppChangeNumHybridizations An operator which changes the number of tetraploid
subtrees by split and merge operations.

• AlloppHybPopSizesScale An operator which changes the sizes of populations just after
hybridization.

• AlloppNetworkNodeSlide. An operator which changes node heights and possibly tree
topology within a tetraploid tree or diploid history or changes hybridization times.

• AlloppSequenceReassignment An operator which changes assignments of sequences within
an individual

2.1.4 Classes in dr.evomodel.speciation

• AlloppDiploidHistory represents the part of the network before hybridizations. It is
basically a tree with some tips representing diploid species at present time and others
representing the points at which hybridization occurs.

• AlloppLeggedTree is a homoploid ‘tree with legs’. Used only for tetraploid trees (July 2012).

• AlloppNode An interface implemented by DipHistNode in AlloppDiploidHistory,
TetraTreeNode in AlloppLeggedTree, and MulLabNode in AlloppMulLabTree. The ABC
AlloppNode.Abstract contains some common functionality, especially for constructing
AlloppDiploidHistory, AlloppMulLabTree.

• AlloppMSCoalescent computes coalescent log-likelihood of a set of gene trees embedded
inside a allopolyploid species network. It is an instanceof Likelihood.

• AlloppMulLabTree implements a multi-labelled binary tree. Its nodes can store populations
and hybridization times. It made from the tetraploid trees and diploid history.

• AlloppNetworkPrior computes log-likelihood of prior for the network. It is an instanceof

Likelihood.

• AlloppNetworkPriorModel stores parameters for network prior (eg rates). It is an
instanceof Model.

• AlloppSpeciesBindings knows how species are made of individuals and individuals are
made of taxa (= diploid genomes within individuals). It is an instanceof Model.

• AlloppSpeciesNetworkModel implements the species network as a collection of ‘tree with
legs’, that is, AlloppLeggedTree’s , and converts this representation into a multi-labelled
binary tree, that is, an AlloppMulLabTree. It is an instanceof Model.

2.1.5 Classes in dr.evolution.tree

• SlidableTree An interface implemented by AlloppDiploidHistory, AlloppLeggedTree. It
is a minimal tree interface that supports MNL moves.
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2.1.6 Classes in test.dr.evomodel.speciation

• AlloppSpeciesNetworkModelTEST is for testing.

2.1.7 Classes in dr.util

• AlloppMisc is odds and ends, mainly for testing.

2.2 Tests

JUnit tests are in AlloppSpeciesNetworkModelTEST. I have decided to create a new (inner) class
for each test, which is passed to constructors and other functions. This distinguishes test code
from normal code, and sometimes the class is used to supply extra information needed for the test.
In other cases it looks messy.

2.2.1 Test 1: network to MUL-tree

I have code for translating a network representation into a mullab representation, which is tested
by some small cases in a test unit AlloppSpeciesNetworkModelTest. That does 3 tetra species,
and 2 diploid species, in various arrangements.

2.2.2 Test 2: Likelihood of MUL-tree

Builds a small AlloppMulLabTree, with every height, coalescence, nlineages, flags, unions filled in,
mostly ‘manually’. Filling population indices and calculation of likelihood is then done as in real
usage. The result is compared to that calculated by R code.
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Chapter 3

Interfaces and classes in
AlloppNET

The next two sections describe two interfaces. The remaining sections describe the major classes.
They are in order of packages, and alphabetically within packages.

3.1 Interface AlloppNode

In evomodel.speciation.

Implemented by MulLabNode, TetraTreeNode, DipHistNode which both extend
AlloppNode.Abstract.

nofChildren(), getChild(int ch), getAnc() getTaxon() getHeight(), getUnion(). These are
all get methods.

setChild() setAnc(), setTaxon(), setHeight(), setUnion(), addChildren(). These are all set
or simple edit methods.

String asText(). For debugging output.

fillinUnionsInSubtree(AlloppSpeciesBindings apsp). Recursive. If node has children, it
calls itself on both children, then makes this node have clade equal to the union of the clades of its
two children. If tips are filled, calling this on root does whole tree.

nodeOfUnionInSubtree(FixedBitSet x). Searches subtree rooted at node for most tipward node
whose union contains x. If x is known to be a union of one of the nodes, it finds that node, so acts
as a map union to node.

AlloppNode.Abstract implements the last two. It also has a static method:

subtreeAsText(). For debugging output.
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3.2 Interface SlidableTree

In evolution.tree.

Provides implementation of MNL move. The moves are applied to tetratrees as AlloppLeggedTree
s and the DiploidHistory.

3.2.1 Interface Methods

getSlidableRoot(), getSlidableNodeCount(), getSlidableNodeTaxon(),
getSlidableNodeHeight(), setSlidableNodeHeight(), isExternalSlidable(),
getSlidableChild(), replaceSlidableChildren(), replaceSlidableRoot().

3.2.2 Methods (static utils)

mauCanonical(). Returns a left-right ordering of nodes with randomly flipped children.

mauReconstruct(). Makes a new tree after a node height has changed.

Private:

mauCanonicalSub(). Recursive, for mauCanonical().

mauReconstructSub(). Recursive, for mauReconstruct().

highestNode() For mauReconstruct().

3.3 Operator AlloppChangeNumHybridizations

In evomodel.operators.

Operator which changes the number of tetraploid trees. See 2012-09-24-MCMCmoves.pdf for
details of the algorithm.

It contains two simple private classes SplitCandidate and MergeCandidate for listing possible
moves and choosing one.

3.3.1 Methods

Implements standard simple methods for operator. The key one is doOperation() which calls
either doMergeMove() or doSplitMove().

doMergeMove() uses findCandidateMerges()() to list possible merges, chooses a random one and
calls mergeTettreePair() to carry it out. Calls removeHybPopParam() in
AlloppSpeciesNetworkModel. Calculates and returns Hastings ratio.
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doSplitMove(). uses findCandidateSplits() to list possible splits, chooses a random one and
calls splitTettree() to carry it out. Calls addHybPopParam() in AlloppSpeciesNetworkModel.
Calculates and returns Hastings ratio.

findCandidateMerges(), countCandidateMerges() for doMergeMove(), latter for Hastings ratio.

findCandidateSplits(), countCandidateSplits() for doSplitMove(), latter for Hastings ratio.

pairAreMergeable() checks topology of legs in diploid history agree and meet in the way that is
produced by a split move, Done using tettreesShareLegs() in AlloppDiploidHistory.

mergeTettreePair() merges two tetraploid trees by calling a constructor in AlloppLeggedTree,
fixes up the links to diploid history, then calls removeFeet() in AlloppDiploidHistory to make a
smaller diploid history. See PDF mentioned above for more details.

splitTettree() splits a tetraploid tree. It is passed two nodes which were children of root of old
tree and which become the roots of the two new ones. It makes two calls to a constructor in
AlloppLeggedTree to make the new trees. It calls addTwoDipTips() in AlloppDiploidHistory to
make a larger diploid history. See PDF mentioned above for more details.

3.4 Operator AlloppHybPopSizesScale

This is a simple scaling operator which scales a single randomly chosen population size just after
hybridization. Can’t use the standard scaleOperator because the number of such population sizes
changes.

3.5 Operator AlloppNetworkNodeSlide

In evomodel.operators.

Extension of ideas of Mau et al (1999) to deal with allopolyploid networks. It is three operators in
one:

• Change a hybridization height

• Slide a node in a tetraploid tree

• Slide a node in a diploid tree

It contains a simple private class NodeHeightInNetIndex for recording a chosen node/move type.

3.5.1 Methods

Implements standard simple methods for operator. The key one is doOperation() which calls
operateOneNodeInNet().

Private:
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randomnode(). Chooses a random node in network, which can mean a node in the diploid history,
a node in a tetraploid subtree or a hybridization event.

operateOneNodeInNet(). Calls randomnode() then one of operateOneNodeInTetraTree() or
operateHybridHeight() or operateOneNodeInDiploidHistory().

operateHybridHeight(). Moves the hybridization height to somewhere between root of tree and
split height or most recent foot height. This means changing the heights of a pair of hyb-tips in
parallel.

operateOneNodeInTetraTree(). Does a MNL move. It avoids moving the root before the
hybridization height as well as respecting limits from gene trees. It calls
SlidableTree.Utils.mauCanonical() and SlidableTree.Utils.mauReconstruct().

operateOneNodeInDiploidHistory(). Does a MNL move. It obeys three restrictions when
choosing a new node height. It avoids making nodes so ancient that they become incompatible with
any of the gene trees. It avoids making parent nodes of hyb-tips more recent than the hyb-tips. It
keeps the root a diploid by preventing the root becoming to the left or right of all diploids, which
can mean preventing the root becoming too recent, or another node becoming too ancient. It calls
SlidableTree.Utils.mauCanonical() and SlidableTree.Utils.mauReconstruct().

3.6 Operator AlloppSequenceReassignment

In evomodel.operators.

Operator which changes the assignment of sequences belonging to a randomly chosen individual in
a randomly chosen species.

3.6.1 Methods

Implements standard simple methods for operator. The key one is doOperation() which does one
of three types of move. The first two, permuteOneSpeciesOneIndivForOneGene(), and
permuteSetOfIndivsForOneGene() are in AlloppSpeciesBindings and do ‘small’ and ‘big’
changes to sequence assignments within a gene tree. The third swaps a whole tetraploid subtree. It
makes multiple calls to flipAssignmentsForAllGenesOneSpecies() in AlloppSpeciesBindings

and flipLegsOfTetraTree() in AlloppSpeciesNetworkModel.

3.7 Diploid history AlloppDiploidHistory

In evomodel.speciation.

This a tree with some tips representing diploid species at present time and others representing the
points at which hybridization (to form a tetraploid) occurs. The latter are in pairs and have times
before present, and I call them ‘hydridization tips’ or ‘hyb-tips’. From the point of view of a
tetraploid tree these hyb-tips are feet at the ends of legs.
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The purpose of this class is to represent the part of the network before hybridizations (=‘diploid
history’) in a form (the array of DipHistNode’s) that can be subjected to Mau-type moves.

The diploid history is constructed from a diploid tree and a single tetraploid tree initially. MCMC
moves can change the number of tetraploid trees.

3.7.1 Inner classes

DipHistNode is a private class implementing AlloppNode. An array of these is used to represent
the diploid history as a tree. It has fields for unions, and for linking hyb-tips to a
AlloppLeggedTree.

3.7.2 Methods

AlloppDiploidHistory(). Main constructor for initial random state. Passed an array of taxa for
the diploids, and a AlloppLeggedTree for the tetraploids, from which the AlloppDiploidHistory

is made. This is an array of DipHistNode’s. The constructor also makes a SimpleTree

representing the diploid history, for testing only.

There is a copy constructor.

There is another constructor for testing, which is built form an array of SimpleNodes, a set of
tetraploid trees, and a AlloppSpeciesBindings (which is needed for making unions).

getSlidableRoot(), replaceSlidableRoot(), getSlidableNodeCount(),
getSlidableNodeHeight(), \verbgetSlidableNodeTaxon()+, setSlidableNodeHeight()+,
isExternalSlidable(), getSlidableChild(), replaceSlidableChildren(). These are
overides for SlidableTree interface.

asText() for debugging.

getInternalNodeCount() for node slide operator.

getDiploidTipCount() used to construct AlloppMulLabTree.

collectFeet() used by move hyb height operator.

tipIsDiploidTip() used by node slide operator for keeping a diploid root.

tettreesShareLegs() for move that merges two tettrees.

intervalOfFoot() is for move that merges two tettrees. This is for Hastings ratio calculation.

removeFeet() is for move that merges two tettrees. This is for after merge.

addTwoDipTips() is for move that splits a tettree. This is for after split.

getAncHeight() is for move that splits a tettree.

getRootIndex(), getHeightFromIndex(), getLftFromIndex(), getRgtFromIndex(),
getTaxonFromIndex() are for AlloppMulLabTree constructor.

getRootHeight()

getHybHeight()
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collectInternalAndHybHeights() for prior lhood.

moveHybridHeight() for move.

scaleAllHeights() Passed a scaling factor this multiplies all heights (including those of hyb-tips)
in the tree. For move and network construction.

clearAllNodeTettree() for tests during merging tetrees.

getNodeTettree() for moving hyb time, and tests during merging tetrees.

getNodeLeg() for node slide in diploid history, for unions, for gene-tree checking.

setNodeTettree() is for move that merges two tettrees.

diphistTreeAsText(), diphistTreeAsUniqueNewick(), diphistTreeAsNodeList(). Output for
testing.

diphistOK() for internal consisitency checks.

Private:

buildSubtreeFromNodes() for merging and splitting moves, when diploid history size changes.

removeTip() for removeFeet().

makesimpletree(). For testing, used by constructor.

makesimplesubtree(). For makesimpletree().

simpletree2dhtesttree() for unit test construction.

3.8 Homoploid tree model AlloppLeggedTree

In evomodel.speciation.

This is a ‘tree with legs’, which is used for a tetraploid species tree which is attached to a diploid
history via its legs.

3.8.1 Inner classes

ALTNode is a private class implementing AlloppNode used to represent a tree, in a way that
supports MNL moves. Used for the tetraploid trees, and maybe one day for hexaploids. It has a
union field, used for calculations to restrict MCMC moves to be compatible.

3.8.2 Methods

AlloppLeggedTree(). Main constructor for initial random state. Passed an array of Taxons.
Makes a random Yule-type tree for them, as an array of ALTNodes. The legs are unset at this point.
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There is a copy constructor for store and restore methods.

There is a constructor which makes a merged tree from two trees, for merge move.

There is a constructor which makes a tree from a subtree of a given tree, for split move.

There is also a constructor for testing, which make small nonrandom trees.

getSlidableRoot(), replaceSlidableRoot(), getSlidableNodeCount(),
getSlidableNodeHeight(), \verbgetSlidableNodeTaxon()+, setSlidableNodeHeight()+,
isExternalSlidable(), getSlidableChild(), replaceSlidableChildren(). These are
overides for SlidableTree interface.

asText() for debugging.

leggedtreeOK() for internal consisitency checks.

()

scaleAllHeights(). Passed a scaling factor this multiplies all heights in the tree. For moves and
network construction.

fillinTipUnions() for unionOfWholeTetTree() in AlloppSpeciesNetworkModel.

getRootHeight() returns what it says.

getExternalNodeCount(), getInternalNodeCount() return what they say.

collectInternalHeights() returns what it says, for prior likelihood calculation.

setDiphistLftLeg(), setDiphistRgtLeg() used by diploid history constructor and moves to
change legs.

getDiphistLftLeg(), getDiphistRgtLeg() return what they say.

Private:

copySubtree() for ‘merge’ constructor.

noftipsSubtree() for ‘subtree’ constructor.

randomnodeheight() for initial constructor.

3.9 Likelihood calculator AlloppMSCoalescent

In evomodel.speciation.

Computes coalescent log-likelihood of a set of gene trees embedded inside a allopolyploid species
network.

16



3.9.1 Methods

AlloppMSCoalescent(). Constructor. Stores AlloppSpeciesBindings and
AlloppSpeciesNetworkModel and adds itself to their model-listeners.

There is also a constructor for testing.

Implements standard simple methods for likelihood. Key ones follow.

calculateLogLikelihood(). Calls geneTreeFitsInNetwork and geneTreeLogLikelihood in
AlloppSpeciesBindings for each gene.

getLikelihoodKnown(). Returns false. Always recalculate from scratch.

3.10 Multi-labelled tree AlloppMulLabTree

In evomodel.speciation.

Represents the species network as a single binary tree with tips that can be multiply labelled with
species. It is reconstructed when the network changes. It is ‘refilled’ with information about
coalescences in order to calculate the likelihood Pr(τi|W, θ, γi).

It contains the population size parameters. These are three arrays, for tip populations, rootward
populations, and hybrid populations.

3.10.1 Inner classes

MulLabNode implements AlloppNode. It contains information (‘node rôle flags’) about the node’s
rôle in the network (in a tetraploid tree, the root of one, ancestral to one), populations sizes (via
indices), and a union field which is a set of (species index, sequence index) pairs which identifies
the node. It has fields for number of lineages, and for coalescent times, which are filled in for one
gene at a time during likelihood calcuation.

SpSqUnion - low level class used for mapping population values to nodes in AlloppMulLabTree.

PopulationAndLineages - records the information (times, populations, number of lineages)
needed to calculate the probability of coalescences in a single branch of the AlloppMulLabTree.

3.10.2 Inner class methods

Apart from AlloppNode implementation, there is:

MulLabNode.tippop(), MulLabNode.hybpop(), MulLabNode.rootpop(). Returns the population
value at the tip end of the branch, just after hybridization, or root end of the branch, respectively.

PopulationAndLineages.populationAt(). For calculating the probability of coalescences in a
single branch of the multi-labelled tree.
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3.10.3 AlloppMulLabTree Methods

AlloppMulLabTree(). Constructor. Passed a AlloppDiploidHistory and an array of
AlloppLeggedTree’s, the AlloppSpeciesBindings and the population values. Makes a single
multi-labelled binary tree. It counts tips, makes array of MulLabNodes. It calls
subtree2MulLabNodes() to construct the topology with taxons and unions filled at tips, and set
some node role flags. Then it calls fillinUnionsInSubtree(). Then
fillinTetraFlagsInSubtree() completes the job of setting node role flags. Finally it calls
makesimpletree() to make tree for output (so that AlloppSpeciesNetworkModel can implement
Tree interface).

There is a constructor for testing conversion of diploid history plus tetraploid trees to MUL-tree.

There is a constructor for testing likelihood calculations.

testGeneTreeInMULTreeLogLikelihood() for testing.

fillmlnodesforlhoodtest1() for testing.

mullabtreeOK() for internal consisitency checks.

mullabTreeAsNewick(). Converts the multi-labelled tree to a Newick string, currently just for
testing.

asText(). For testing.

clearCoalescences(). Removes coalescent information from nodes. Calls
clearSubtreeCoalescences(). The method for recording coalescences ‘accumulates’ them as they
are found in gene trees, so need to remove them all first.

recordLineageCounts(). Fills in counts of lineages at nodes. Calls
recordSubtreeLineageCounts().

coalescenceIsCompatible(). See method of same name in AlloppSpeciesNetworkModel.

recordCoalescence(). See method of same name in AlloppSpeciesNetworkModel.

sortCoalescences(). See method of same name in AlloppSpeciesNetworkModel.

geneTreeInMLTreeLogLikelihood(). Calculates the log-likelihood for a gene tree in the
multi-labelled tree. Calls fillinpopvals() and geneTreeInMLSubtreeLogLikelihood().

Private:

fillinTetraFlagsInSubtree() for constructor.

subtree2MulLabNodes() for constructor. Visits nodes in diploid history recursively, and when it
gets to a hyb-tip, it calls allopptree2MulLabNodes() to recurse into a tetraploid tree. Each
tetraploid tree is visited twice, once for each hyb-tip. It thus builds the MUL-tree topology. Taxons
and unions are set at tips. This also sets some tetraancestor flags and all tetraroot flags.

allopptree2MulLabNodes(). Visits nodes in a tetraploid tree recursively. Taxons and unions are
set at tips. This also sets some intetratree flags.
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makesimpletree(). Converts the multi-labelled tree into a SimpleTree so that it can be logged by
standard tree logger.

makesimplesubtree(). Recursive. For makesimpletree().

subtreeAsText(). Recursive. For asText().

nodeOfUnion(). Passed FixedBitSet x, it returns the most tipward node whose union contains x.
If x is known to be a union of one of the nodes, it finds that node, so acts as a map from union to
node. Calls nodeOfUnionInSubtree().

clearSubtreeCoalescences(). Recursive, for clearCoalescences().

recordSubtreeLineageCounts(). Recursive, for recordLineageCounts().

fillinpopvals(). This fills in indices in nodes to index values in the three population arrays.
The population values are per-species-clade (per-branch in network), but of course more than one
node in MulLabTree may correspond to the same species. Other complications are that tips are
different from internal nodes, and that nodes which roots of tetratrees, ancestors of such roots, as
well as the root are treated differently. It collects unions (which represent sets whose elements
identify a species and a sequence) from the nodes and then sorts them so that sets of nodes with
same species clade are grouped together. This does some of what is required, since nodes with the
same species clade are treated the same. Calls fillinpopvalsforspunion() to deal with a set of
nodes with same species clade. See 2012-08-06-popvalues-to-nodes.pdf for more details.

fillinpopvalsforspunion(). For fillinpopvals(). Deals with a one union of species indices,
that is, for all nodes in the multi-labelled tree which contain a particular group of species in thier
clade.

siblingOfNode() is simple help function.

geneTreeInMLSubtreeLogLikelihood(). Recursive, for geneTreeInMLTreeLogLikelihood().
Calls branchLLInMULtreeNoDiploids() or branchLLInMULtreeTwoDiploids().

branchLLInMULtree(). Likelihood calculation of gene tree in multi-labelled tree for one branch in
the case of no diploids. This

limbLogLike(). A ’limb’ is part or all of a branch in which the population varies linearly (no
hybridization or other jumps). This is used by geneTreeInMLSubtreeLogLikelihood().

limbLinPopIntegral(). For limbLogLike().

union2spseqindex(union). Passed union for a tip, hence only containing one (species index,
sequence index) pair. It returns the index of that.

Comparator:

SPUNION\_ORDER.compare(). For fillinpopvals(). This is quite a complex sort, see
fillinpopvals(). Its main task is to sort the nodes (defined by clades of (species, sequence)
pairs) so that nodes with the same species clades are grouped together. But it also sorts the
groups so that tips occur first, and it sorts nodes within groups in a well-defined way that
fillinpopvalsforspunionNoDiploids() and fillinpopvalsforspunionTwoDiploids() rely on.
More detail follows.
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The comparator sorts the unions of (species, sequence) pairs (SpSqUnions) so that all unions
containing the same set of species (ignoring sequence) are grouped together. Call the sets of
SpSqUnions for the same species a group. There can be 1,2 or 3 SpSqUnions in a group.

The groups are sorted in order of increasing number of species (clade size). All groups for a single
species (a tip in the network) come first, then those groups for two species, and so on to the root
for all species. For groups that have equal numbers of species, a lexicographical ordering using
species indices is used.

Within each group, species and sequence information is used to sort the 1 to 3 SpSqUnions. The
size of the ‘clade’ of (species, sequence) pairs is used first in the comparison, which ensures that
the three nodes with the same species - corresponding to two roots of tetratrees in the
multi-labelled tree pus a leg-join - are ordered so that the two roots come first.

3.11 Prior likelihood calculator AlloppNetworkPrior

In evomodel.speciation.

Computes prior log-likelihood of allopolyploid species network. This has two main components: for
the topology and node times; and for the populations. (Unlike earlier versions of AlloppNET, the
prior model on populations are specified as part of the network prior model, since the network
needs to get hold of the distribution to generate new values when the number of hybridizations
increases. Aug 2012.)

3.11.1 Methods

Implements standard simple methods for likelihood. Key ones follow.

Constructor gets the distribution model for hybrid populations from AlloppNetworkPriorModel

and sets this in AlloppSpeciesNetworkModel.

calculateLogLikelihood(). Calls loglikelihoodEvents(), loglikeNumHybridizations() to
calculate the prior for the topology and node times. Adds the priors for the population values via
the distribution models in AlloppNetworkPriorModel.

getLikelihoodKnown(). Returns false. Always recalculate from scratch.

loglikelihoodEvents() is Yule-like likelihood using times of events.

loglikeNumHybridizations() is experimental adjustment.

3.12 Prior model AlloppNetworkPriorModel

In evomodel.speciation.

Constructed from two one-dimensional parameters, event rate and population scaling factor, and
three distribution models, one for each set of population values (tip, rootward, hybrid). It just
stores this stuff for AlloppNetworkPrior and AlloppSpeciesNetworkModel.
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3.13 Connecting network to gene trees:
AlloppSpeciesBindings

In evomodel.speciation.

AlloppSpeciesBindings knows how species are made of individuals and individuals are made of
taxa (= diploid genomes within individuals).

It also contains the list of gene trees - tree topologies and node times, plus popfactors. Given a
AlloppSpeciesNetworkModel it can say if a gene tree is compatible, and calculate the
loglikelihood of the gene tree ‘fitting’ into the network.

It is here that assignments of sequence copies within individuals get permuted. See
GeneTreeInfo.AlignmentRowInfo below.

3.13.1 Inner classes

Individual - Simple helper class for one individual containing one or more sequences.

SpeciesIndivPair - Simple helper class used by permuteSetOfIndivs() which is part of sequence
reassignment operator.

ApSpInfo - Simple helper class for one (allopolyploid) species, containing one or more individuals

GeneTreeInfo - A gene tree as used by BEAST, plus popfactor, plus indices for each individual to
map sequences to indices (0 or 1 for tetraploids) which identify the legs of the tetraploid subtree.

GeneTreeInfo.SequenceAssignment - where the indices just mentioned are stored.

GeneTreeInfo.GeneUnionNode - for GeneUnionTree.

GeneTreeInfo.GeneUnionTree - This is used during calculations fitsInNetwork(),
treeLogLikelihood() for one gene tree at a time, then discarded. It serves a similar function to
JH’s CoalInfo, storing the set (=union) of species-sequence pairs belonging to a node in the gene
tree. I copy gene tree topology and times into a GeneUnionTree to do calculations.

3.13.2 Methods

There are a lot of mapping of one kind of index or indices to others, one to get list of species at a
given ploidy level, etc. fitsInNetwork() and geneTreeLogLikelihood() are key methods.

3.13.3 Methods for small inner classes

ApSpInfo.taxonFromIndSeq() Passed indices for individual, sequence, returns taxon.

GeneTreeInfo.SequenceAssignment.toString(). For header in log file.

GeneTreeInfo.GeneUnionNode.asText(). For testing.
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3.13.4 GeneTreeInfo.GeneUnionTree methods

GeneUnionTree(). Constructor. Calls genetree2geneuniontree() to build the GeneUnionTree.

getRoot(). Does what it says.

private to GeneUnionTree:

subtreeFitsInNetwork() Recursive. Calls coalescenceIsCompatible() in network.

subtreeRecordCoalescence() Recursive. Calls recordCoalescence() in network.

genetree2geneuniontree() Recursive. Copies topology, fills in union fields.

asText(). For testing. Makes textual rep of GeneUnionTree.

subtreeAsText(). For asText().

3.13.5 GeneTreeInfo methods

GeneTreeInfo(). Constructor. Fills array of AlignmentRowInfo s. Fills int array of lineage counts
at tips.

seqassignsAsText(). For testing.

genetreeAsText(). For testing.

fitsInNetwork(). Calls subtreeFitsInNetwork() in GeneUnionTree.

treeLogLikelihood(). Calls clearCoalescences() in network, makes new GeneUnionTree, calls
subtreeRecordCoalescence() in GeneUnionTree, then sortCoalescences() in network, then
recordLineageCounts() in network, and finally geneTreeInNetworkLogLikelihood() in
network.

storeSequenceAssignments(). Stores sequence assignments.

restoreSequenceAssignments(). Restores stored sequence assignments.

spseqUpperBound(). Passed two sets of species-sequences, it finds the most recent coalescence for
this gene such that the children of this gene in the gene tree contain at least one species-sequence
from each set. Used by AlloppNetworkNodeSlide.

permuteOneSpeciesOneIndiv(). Chooses a random species and a random individual, and calls
permuteOneAssignment().

permuteSetOfIndivs(). Chooses a set of (species, individual) pairs, and calls
permuteOneAssignment(). 2011-08-12: How it chooses the set is odd. Probably need revisiting
when more testing of MCMC efficiency done.

getSeqassigns(). Passed taxon index, it returns (reference to) a SequenceAssignment. Used by
logger.

wasChanged(). Does nothing. (Might set dirty flag one day.)
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Private:

collectIndivsOfNode(). Used by permuteSetOfIndivs().

subtreeSpseqUpperBound(). Called by speciationUpperBound() to do the real work.

flipOneAssignment(). Passed indices for a species and an individual, to do one ‘flip’ of a
sequence assignment.

flipAssignmentsForSpecies(). Passed index for a species and calls flipOneAssignment() for
all individuals.

3.13.6 AlloppSpeciesBindings methods

AlloppSpeciesBindings(). Constructor. Made from array of ApSpInfos, array of TreeModels,
array of popFactors, and minheight. Makes ’flattened’ arrays of species, individuals, taxa, sets up
maps of indices. Makes array of GeneTreeInfos from TreeModels and popFactors, and then fixes
the node heights to at least minheight.

There are also two constructors for testing.

initialMinGeneNodeHeight(). Returns what it says. Used for starting state of network.

speciesseqEmptyUnion() makes a union of the right size.

taxonseqToTipUnion() makes a union for a tip node, from the taxon.

spsqunion2spunion(). Converts a set (a union) containing (species index, sequence index) pairs
into a set containing just species indices.

numberOfGeneTrees(). Returns what it says.

maxGeneTreeHeight(). Returns what it says. Used for Pr(gi|S) calculation in root.

geneTreeFitsInNetwork(). Passed index of a gene tree, it calls fitsInNetwork() in a
GeneTreeInfo.

geneTreeLogLikelihood(). Passed index of a gene tree, it calls treeLogLikelihood() in a
GeneTreeInfo.

numberOfSpecies(). Returns what it says.

apspeciesName(). Passed index of a species, returns what it says.

SpeciesWithinPloidyLevel(). Passed a ploid level, it returns an array of Taxons for species.

spandseq2spseqindex(). Converts a (species index, sequence index) pair into a single index.

spseqindex2sp(), spseqindex2seq(). Inverse of above, they convert a single index into a
(species index, sequence index) pair. They call spseqindex2spandseq().

apspeciesId2index(). Species name to index.

apspeciesId2speciesindiv(). Converts a species id (name like 03 d B) to a pair of indices
(species,indiv). (Loosely, 03 d B → (d,03)). useed by permuteSetOfIndivs().

numberOfSpSeqs(). Returns number of (species index, sequence index) pairs.
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nLineages() Passed index of a species, returns lineage count at tip.

spseqUpperBound(). Calls method of same name (which see) in each GeneTreeInfo to find
minumum.

permuteOneGeneOneSpeciesOneIndiv(). Chooses a random gene and calls
permuteOneSpeciesOneIndiv() on it.

permuteSetOfIndivsForOneGene(). Chooses a random gene and calls permuteSetOfIndivs() on
it.

flipAssignmentsForAllGenesOneSpecies(). For all gene trees, this calls
flipAssignmentsForSpecies() on it.

seqassignsAsText(). Calls method of same name (which see) in one GeneTreeInfo.

genetreeAsText(). Calls method of same name (which see) in one GeneTreeInfo.

handleModelChangedEvent(Model model, Object object, int index). Calls wasChanged()

on each gene tree.

handleVariableChangedEvent(Variable variable, int index, ChangeType type). Never
called. (asserts false.)

storeState(). Calls storeGeneTreeState() on each GeneTreeInfo.

restoreState(). Calls restoreGeneTreeState() on each GeneTreeInfo.

acceptState(). Does nothing.

getColumns(). Returns array of LogColumn’s for logger, for logging sequence assignments. One
column for each (gene,taxon) pair.

Private:

spseqindex2spandseq(). Used by spseqindex2sp(), spseqindex2seq().

3.14 Central class AlloppSpeciesNetworkModel

In evomodel.speciation.

This is the ‘main’ class for the allopolyploid model. It contains two representations of the network.
It implements the species network as a collection of ‘trees with legs’ and converts this
representation into a multi-labelled binary tree. The general idea is that the network is easiest to
change (eg detach and re-attach tetraploid subtrees) while likelihood calculations are easiest to do
in the multi-labelled tree.

The individual ‘trees with legs’ are implemented by a AlloppDiploidHistory and one or more
AlloppLeggedTree’s. The representation as a multi-labelled binary tree is implemented by
AlloppMulLabTree. It contains a reference to AlloppSpeciesBindings. There is much
communication between these classes.
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This class extends AbstractModel and implements Scalable, Units, Citable, Tree,
TreeLogger.LogUpon. The Tree interface is really an interface for the multi-labelled tree
(AlloppMulLabTree). I think this is necessary because the tree logger (I presume) needs a
constant reference whereas the multi-labelled tree comes and goes.

3.14.1 Methods

AlloppSpeciesNetworkModel(). Constructor. Made from an AlloppSpeciesBindings, and three
starting values for populations. It gets the taxa, diploids and tetraploids, from the
AlloppSpeciesBindings and calls makeInitialNDipsNTetsNetwork() to make a random
network. It then scales it to be shorter than apsp.initialMinGeneNodeHeight() to fit the gene
trees. It makes three arrays for populations (tips, rootward, hybrid population values). The first
two are Parameters of the right size, but the hybrid population values are stored in an array of
doubles because the dimensionality changes. A Parameter is constructed from this as required for
output. Then it converts the network representation into a multi-labelled tree, by constructing an
AlloppMulLabTree.

There is also a constructor for testing the conversion of network to multree.

setHybPopModel(). This is called from AlloppNetworkPrior (which is created after network) to
supply a ParametricDistributionModel for the prior on the hybrid population values. It
completes the construction of the network.

getCitations(). Returns citation info for display.

alloppspeciesnetworkOK() for internal consistency checks.

mullabTreeAsText(). For testing. Calls asText() in AlloppMulLabTree.

The next bunch are AbstractModel overrides.

handleModelChangedEvent(). Calls fireModelChanged().

handleVariableChangedEvent(). Does nothing.

protected void storeState(). Makes copies of all homoploid trees in network. Makes copy of
hybrid population values.

protected void restoreState() Restores copies of all homoploid trees in network. Restores
copy of hybrid population values. Remakes multi-labelled tree. Remakes Parameter for hybrid
population values.

protected void acceptState(). Does nothing.

toString(). For debugging logger. Calls asText() in AlloppDiploidHistory,
AlloppLeggedTree, AlloppMulLabTree and genetreeAsText() and seqassignsAsText() in
AlloppSpeciesBindings.

getColumns(). For debugging logger.

The next bunch are used by MCMC operators (scale() is a MCMC operator).

beginNetworkEdit(). Called before MCMC operation. Currently just debug checks.

25



endNetworkEdit(). Called after MCMC operation. Remakes Parameter for hybrid population
values, remakes multi-labelled tree and calls fireModelChanged().

getName(). Returns model name. (For Scalable implementation.)

scale(). For Scalable implementation, this stretches/squeezes whole network. Calls
scaleAllHeights() and scaleAllPopValues().

calculateDipHistTipUnion() finds the union of a tip (diploid or hyb-tip) in the diploid history.
Used by move that slides node in diploid history to check gene-tree compatibility.

addHybPopParam(). Adds a new hybrid population value, sampled from the prior distribution set
by setHybPopModel(). Returns the logarithm of the prior density, evaluated at the newly created
value, for Hastings ratio calculations.

removeHybPopParam(). Removes a hybrid population value. Returns the logarithm of the prior
density, evaluated at the value that has disappeared, for Hastings ratio calculations.

getNumberOfTetraTrees(). Returns number of tetraploid trees.

getNumberOfInternalNodesInTetTree(). Passed index, returns the number of internal node
heights in a AlloppLeggedTree in the network.

getNumberOfInternalNodesInDipHist(). returns the number of internal node heights in the
diploid history (not hyb-tips).

getTetraploidTree(). Passed index, returns a tree in the network.

getDiploidHistory() returns the diploid history.

setTetTree() for merge/split operators.

addTetree() for merge/split operators.

removeTetree() for merge/split operators.

maxNumberOfHybPopParameters().

setOneHybPopValue().

The next bunch are for likelihood calculations.

getTipPopValues()

getRootPopValues()

getOneHybPopValue()

coalescenceIsCompatible(). Passed a gene coalesence height and union. Called from
AlloppSpeciesBindings to check if a node in a gene tree is compatible with the network. Calls
function of same name in AlloppMulLabTree to do the calculation.

clearCoalescences(). Called from AlloppSpeciesBindings to remove coalescent information
from branches of mullabtree. Calls function of same name in AlloppMulLabTree to do the work.

recordCoalescence(). Called from AlloppSpeciesBindings to add a node from a gene tree to
its branch in mullabtree. Calls function of same name in AlloppMulLabTree to do the work.
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sortCoalescences(). Sorts coalescences within each branch of the multi-labelled tree. Calls
function of same name in AlloppMulLabTree to do the work.

recordLineageCounts(). Records the number of gene lineages at nodes of the multi-labelled tree.
Calls function of same name in AlloppMulLabTree to do the work.

geneTreeInNetworkLogLikelihood(). Calculates the log-likelihood for a single gene tree in the
network. Requires that clearCoalescences(), recordCoalescence(), recordLineageCounts()
called to fill mullabtree with information about a particular gene tree’s coalescences first. Calls
function of same name in AlloppMulLabTree to do some of the work.

Private:

unionOfWholeTetTree() for calculateDipHistTipUnion().

makeInitialNDipsNTetsNetwork(). For constructor of initial random state.

makeLoggingHybPopParam().

scaleAllPopValues(). Stretches or squashes all population values.

scaleAllHeights(). Scales all heights by calling method of same name in each
AlloppLeggedTree. Used by constructor and by scale operator.

numberOfTipPopParameters(). Calculates the number of tip pop parameters.

numberOfRootPopParameters(). Calculates the number of rootward pop parameters.

Delegations for Tree:

getRoot(), getNodeCount(), getNode(int i), getInternalNode(int i),
getExternalNode(int i), getExternalNodeCount(), getInternalNodeCount(),
getNodeTaxon(NodeRef node), hasNodeHeights(), setNodeHeight(NodeRef node),
hasBranchLengths(), getBranchLength(NodeRef node), getNodeRate(NodeRef node),
getNodeAttribute(NodeRef node, String name), getNodeAttributeNames(NodeRef node),
isExternal(NodeRef node), isRoot(NodeRef node), getChildCount(NodeRef node),
getChild(NodeRef node, int j), getParent(NodeRef node), getCopy(), getTaxonCount(),
getTaxon(int taxonIndex), getTaxonId(int taxonIndex), getTaxonIndex(String id),
getTaxonIndex(Taxon taxon), asList(),
getTaxonAttribute(int taxonIndex, String name), iterator(), getUnits(),
setUnits(Type units), setAttribute(String name, Object value),
getAttribute(String name), Iterator<String> getAttributeNames(),
addTaxon(Taxon taxon), removeTaxon(Taxon taxon),
setTaxonId(int taxonIndex, String id),
setTaxonAttribute(int taxonIndex, String name, Object value),
addMutableTaxonListListener(MutableTaxonListListener listener)
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Testing:

testExampleNetworkToMulLabTree(). Builds arrangements of trees with legs to test conversion to
the multi-labelled tree.

addSimpleNodeChildren() for test cases.
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