1

Simulations for allopolyploid networks: AlloppSim (v3)

Graham Jones

2012-01-10

Introduction

This describes version three (2012-01-10) of the simulation program ‘AlloppSim’ used to make
testing data for allopolyploid model in BEAST. AlloppSim (v3) inputs a config file and outputs a
bunch of BEAST XML files. It then runs BEAST on these, and then TreeAnnotator on the
results. For each set of parameters (number of genes G, number of individuals N, and mutation
rate T) it does:

1.

o

Make the MUL-tree

. Make the gene tree topologies and node times

2
3.
4

Call Seq-Gen to produce the sequences

. Constructs the BEAST XML file containing the sequences and ‘standard’ options for an

allopolyploid model in BEAST
Runs BEAST on the XML file

Runs TreeAnnotator on BEAST output (samples of MUL-trees) and optionally samples of
gene trees

AlloppSim is written in R by me. Seq-Gen is written in C by Andrew Rambaut, slightly modified
by me.

1.1

1.

Changes since v2

The biggest change is that two kinds of BEAST XML file can now be generated. The first
kind is for the AlloppNET model (as v2) and the second kind is for the AlloppMUL model,
the multiply labelled tree model.

Changes to make it easier to generate BEAST XML files for real data. AlloppReal_main.r
is new and (at 2012-01-10) deals with the cotton data set.

Made it easier to change the length of the MCMC chain, sampling intervals and burnin.
They are now set at the top level, in AlloppSim_main.r.

The name of the directory containing the config file is now used to code the scenario name
and the AlloppMUL/AlloppNET model choice.

1.2 Changes since v1

The main change is that the configuration file describes a complete set of simulations (for varying
numbers of genes and individuals, and various mutation rates) instead of just one. However it is
more restricted than version one in that numbers of individuals must be the same for all species -
so first version may remain useful.

Another change is that random seeds are not specified in the configuration file. See
2011-10-11-simulations-plan.pdf for new method.

2 Installation

The ZIP file contains two directories simulation_di_tets_multigene and SeqGenSource.
Seq-Gen needs to be compiled and copied to simulation_di_tets_multigene.

Compile seqgen under windows:

gcc -Wall -pedantic -Wextra aamodels.c eigen.c evolve.c gamma.c global.c
model.c nucmodels.c progress.c seq-gen.c treefile.c twister.c -o seqgen.exe
Compile seqgen under Linux:

gcc -Wall -pedantic -Wextra -1m aamodels.c eigen.c evolve.c gamma.c global.c

model.c nucmodels.c progress.c seq-gen.c treefile.c twister.c -o seqgen

gcc might need replacing with a path to the executable for the Gnu C compiler. Under Linux,
note the extra -1m and omission of .exe. Put the executable in a directory with the R code:

AlloppSim_lreadconfig2.r
AlloppSim_2makemultree.r

AlloppSim_main.r
seqgen.exe

3 Usage

Run AlloppSim with a command like this on my desktop Windows computer:
"C:\Program Files\R\R-2.11.1\bin\R.exe" --slave --vanilla --args
DELLVISTA scenAn < AlloppSim_main.r

and this on Albiorix cluster:

R --slave --vanilla --args CLUSTER /home/gjones/scenAn < AlloppSim_main.r

First argument (DELLVISTA or NETBOOKWIN7 or NETBOOKUBUNTU or CLUSTER) tells
AlloppSim_main.r where it is, enabling it to find the rest of the R code, seqgen, BEAST, java, and
what classpath should be.

Second argument (scenAn, /home/gjones/scenAn) specifies the directory containing the config file
and is where all the results go. Within this directory, all subdirectories and files have
‘programmed’ names, see 2011-10-11-simulations-plan.pdf. Note that the last two letters of the

directory name encode the scenario and the model. The last two letters are like Bn for scenario B,
AlloppNET, or At for scenario A, AlloppMUL.

3.1 Example config file

Here is an example config file for the scenario in Figure 1.

nofGNRT 6

1 1 20 4e-8 8e-8

1 3 20 4e-8 8e-8

3 1 20 4e-8 8e-8

3 3 20 4e-8 8e-8

10 1 20 4e-8 8e-8

10 3 20 4e-8 8e-8

noftetratrees 1

genelength 500

ditree ntips 2

a height 0 tippop 100000 prevpop 100000

b height O tippop 100000 prevpop 100000
(a,b) height 0.03 tippop * prevpop *
tetratree ntips 3

z height O tippop 100000 prevpop 100000
y height O tippop 100000 prevpop 100000
x height O tippop 100000 prevpop 100000
(z,y) height 0.0025 tippop * prevpop *
(x,(z,y)) height 0.005 tippop * prevpop *
hyb 0.0075 100000 join * * footl a .01 100000 foot2 a .02 100000

The config file is read line by line, and each line consists of space-separated tokens (so don’t
introduce blank lines or extra spaces). An asterisk * is used to indicate nonexistent values.

nofGNRT 6

Six sets of G, N, R, T values. (Number of genes G, number of individuals N, number of replicates
R, and set of mutation rates T.) For example

3 1 20 4e-8 8e-8

means 3 genes, one individual per species, 20 replicates, and two mutation rates 4e-8 8e-8 in units

of expected substitutions per site per generation. There can be any number of mutation rates, each
results in a separate set of (G,N,T) values, hence different simulations. In this example, there will

be 6*¥2*20 BEAST runs.

noftetratrees 1

The network contains one allotetraploid subtree (one hybridization event).
genelength 500

Each sequence (for all genes) has 500 nucleotides. (Value is passed to Seq-Gen.)

Then there is a list of homoploid trees, one for the diploids and one or more for the allotetraploids.
These are specified as a list of nodes, with an extra line for the ‘legs’ of each allotetraploid tree.

0.0

a X y z b
0.0025 \/ V
0.005
0.0075
0.01
0.02
0.03

Figure 1: Scenario in config file example

Each node specifies its clade, and the nodes appear in a tips-to-root order. (Both children of a
node must appear before the node).

A tip node has a clade specified by one lower-case letter, and my convention is for diploids to be
a,b,c,... and allotetraploids to be z,y,x,.... An internal node uses Newick style like
(left child, right child) for its clade.

All nodes have a height, which must be 0 for tip nodes.

A tip node then specifies a tip population. All nodes except roots of trees specify a ‘previous’
population which specifies the population at the rootward end of the branch leading to this node
in the MUL-tree.

ditree ntips 2

a height 0 tippop 100000 prevpop 100000
b height O tippop 100000 prevpop 100000
(a,b) height 0.04 tippop * prevpop *

The diploid tree with two tips.

tetratree ntips 3

z height O tippop 100000 prevpop 100000

y height O tippop 100000 prevpop 100000

x height O tippop 100000 prevpop 100000

(z,y) height 0.0025 tippop * prevpop *

(x,(z,y)) height 0.005 tippop * prevpop *

hyb 0.0075 100000 join * * footl a .01 100000 foot2 a .02 100000

An allotetraploid tree with three tips. The first five lines specify the allotetraploid tree after
hybridization, one line per node, down to the root. The last line specifies the evolutionary history
of the allotetraploid before the root. In this case both legs meets clade a, at different heights.

Either the two legs meet the diploid tree separately in which case join is unused (as above), or the
two legs join before meeting the diploid tree, in which case foot2 is unused (as below).

hyb 0.01 1000 join 0.02 210000 footl a .03 220000 foot2 * * x

The parameters are specified as follows.

hyb [height of the hybridization event] [population just after hybridization]

join [height when legs join] [population of both legs between join and hybridization]

foot1 [diploid clade where first leg meets] [height of foot] [previous population of the foot node in
the MUL-tree]

foot?2 is the same as foot1l.

4 Notes on the BEAST XML

Strict clock for branch rates. HKY model for substitutions. No site rate heterogeneity.

Different mutation rates for different genes are assumed, relative to the first gene which is fixed at
1.0.

Mixed distribution (two gammas) like *BEAST for populaton prior is assumed.

Some comments are put into the XML.

5 Code structure and algorithms

The main R script is AlloppSim_main.r which calls the routines below. The main control flow is

Read the config file
for (each (G,N,T)) {
Make a MUL-tree
for (each replicate) {
Make BEAST XML
}
}
for (each (G,N,T)) {
for (each replicate) {
Run BEAST
}
}
for (each (G,N,T)) {
for (each replicate) {
Run TreeAnnotator

}
}

5.1 Reading the config file

AlloppSim_lreadconfig2.r reads the input, checks it (a bit) and stores the config.

5.2 Making a MUL-tree

AlloppSim_2makemultree.r converts the network to a MUL-tree as a list of nodes, and fills the
nodes with times, populations, etc. The result looks like this.

idx clade anc 1 r hgt hybhgt nlin tippop hybpop prevpop
1 aA 6 -1 -1 0 -1 1 1e+05 -1 1e+05
2 bA 7-1-1 0 -1 1 1e+05 -1 1e+05
3 aA,zA,bA,zB -1 6 7 0.04 -1 -1 -1 -1 -1
4 zA 6 -1 -1 0 0.01 1 1le+05 1e+05 1e+05
5 zB 7 -1 -1 0 0.01 1 1e+05 1e+05 1e+05
6 aA,zA 3 1 4 0.02 -1 -1 -1 -1 1e+05
7 bA,zB 3 2 56 0.03 -1 -1 -1 -1 1e+05

5.3 Making a set of gene trees

AlloppSim_3makegtrees.r Simulates the coalescent process withing the MUL-tree. For each gene
it produces a Newick string. It first makes a gene tree as a ‘nearly-Newick’ string with node
heights rather than branch lengths. This is converted to a node list which looks like this. This is
converted into a Newick string which looks like this. This can be passed to Seq-Gen.

((01bA:0.0302458,01zB:0.0302458) :0.0137192, (01aA:0.02711082,01zA:0.02711082) :0.01685418) ;

5.4 Making the sequences

AlloppSim_4makeseqfiles.r
Seq-Gen is called for each gene tree with a command like

seqgen.exe -mHKY -t3.0 -£0.3,0.2,0.2,0.3 -1500
-nl -z6565174 An2GTgln1t40ril-1.txt -y An2SQgini1t40ri-1.txt

where the -1 parameter (500) is taken from input config. In the file names A stands for scenario
(second last letter of scenAn), n stands for AlloppNET (last letter of scenAn),GT stands for gene
tree, SQ for sequence. The first 2 just helps keeps files in order.

5.5 Making the XML
AlloppSim_bbeastxml_toplevel.r make the BEAST XML file, calling many low-level routines in
AlloppSim_6beastxml_bits.r to do so.

V2 to V3 changes. The function make.beastxml () renamed as
make.beastxml.from.sim.network() and refactored to call make.beastxml.start(),
make.beastxml.after.patterns(). A flag mulTreeVersion is passed down to choose between
AlloppNET and AlloppMUI models.

5.6 Running BEAST, TreeAnnotator

Straightforward once classpath is figured out. Running BEAST takes at least 90% of the time.

