
Program using rjMCMC for exploring network priors

Graham Jones

2011-11-23

1 Introduction

The main difficulty with the network prior is that the normalization constants are needed for different
number of parameters.

Suppose the models correspond to the number of hybridizations h. If there are m tetraploids, then there
are m models h = 1, h = 2, . . .h = m. Let W be the network topology and node times. The conditional
priors π(W |h) must be comparable for different values of h. To do this analytically, it is necessary to
integrate out the parameters in W , ie calculate for each h the value of

∫

π(W |h)dW

which is a sum over labelled topologies and an integral over node times. That seems to be hard. It is
possible to deal with Yule or birth-death priors for trees of different sizes, but I can’t find anything
analogous for networks.

An alternative is to use some fairly arbitrary prior, and estimate its properties by sampling from it. This
note describes a program to do that.

2 Model

The network topology and node times is denoted by W . There are d diploids, m tetraploids, and
h ∈ {1, 2, . . ., m} hybridizations. The network is divided into h tetraploid trees and a single ‘diploid
history’, which is also a tree. Figure 1 shows an example with d = 3, m = 6, h = 3. Note that the diploid
history has d + 2h = 9 tips. There are d ordinary diploid tips at time 0, and h pairs of tips at nonzero
times (b1, b2, b3 in Figure 1). I will call the latter ‘hybridization tips’.

2.1 Probability calculation

The formula used (on 2011-11-25) is a Yule density for a tree X which is derived from the network. The
hybridization tips are extended past the roots of tetraploid trees to the two children of the root, or to the
present. See Figure 2.

The formula is

λn−12n−1

(n − 1)!
exp[−λ(2t1 + t2 + · · ·+ tn−1)] (1)

where there are n tips in the tree X, where

n = d +

h
∑

i=1

min(2, |Ti|) (2)

1

�
� �

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�

�
� �

�
�
�

Figure 1: Network notation

�
� �

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2: Network to tree

2

The node heights t1, t2, . . . , tn−1 are the internal nodes of the diploid history and the non-root nodes of all
of the tetraploid subtrees.

3 Moves

I think it can be done with four types of move:

• 1. Change a tetraploid subtree, tipwards of the allopolyploidization

• 2. Change an allopolyploidization time

• 3. Change the diploid history, rootwards of allopolyploidizations

• 4. Change the number of tetraploid subtrees

3.1 MCMC moves in tetraploid subtrees

Many MCMC moves for trees have been developed. *BEAST uses a MCMC move for the species tree
based on the ideas of [1], and this move also also seems appropriate here.

���� � ���� �

���� ����� �

� � � � �

� � � � �

�

�

�

�

�

Figure 3: MCMC move based on Mau et al 1999.

a. Randomly orient the tree, giving each branch at each internal node a left/right label.

b. Convert to a point process representation (a ‘drawing’), with every node getting an (x,y) position.

c. Change one or more of the node heights.

d. Then, forgetting the identity of the internal nodes, but keeping the left-right order of the tips, construct
a new tree by joining up clades in order of node height.

e. (Not necessary, but it makes the move more symmetric.) Forget the left-right ordering.

This will change the topology if two nodes which were originally parent and child get heights which
reverses the order. Step (c) should be reversible, so that the probability of going from one set of heights A
to another set of heights B is the same as going from B back to A.

3.2 MCMC move for the allopolyploidization time

This is straightforward. In Figure 1, it means moving b1 in [0, s1], b2 in [r2, s2], or b3 in [r3, s3]. There is no
change of topology.

3

3.3 MCMC move in the diploid history

The ‘Mau move’ described above can be adapted to deal with the diploid history. The diploid history is an
ordinary tree with some tips having nonzero times. So in step (c) the heights must be changed in such a
way that no node gets a height smaller than the tip height to its immediate left or right.

To keep this simple, I change only one height at a time, and use a uniform kernel.

3.4 MCMC move for the number of allopolyploidizations

NOTE: this describes what the program does (on 2011-11-25), but it is not
a rigorous proof that this is what it should do.

Sampling all values of h can be done by repeatedly changing h to h − 1 or h + 1, and that can be done by
splitting one tetraploid subtree into two and merging two into one. The difficult part is making the moves
reversible, so that the probability of a move going from one state A to another B is balanced by a reverse
move.

� ��

��

��

��

��

�	

�

�����

�����

����	

����

��

��

��

��

Figure 4: MCMC move to change number of tetraploid subtrees.

When the MCMC move for changing h is chosen, a split or a merge is chosen with equal probabilty. If a
split is chosen, but no splits are possible, no move is made; the same state is sampled again. Likewise, if a
merge is chosen, but no merges are possible, the same state is sampled again.

Splitting (going left to right in Fig 4). Any tetraploid subtree with more than one tip can be split. One, T ,
is chosen at random. The two child nodes of the root of the tetraploid subtree become the roots of the two
new tetraploid subtrees T1, T2. In Fig 4, the root of T is at v1, and the two new roots are also tips. The
allopolyploidization time v2 becomes the allopolyploidization time of one of the new tetraploid subtrees
(w2 in T2), and the root time v1 becomes the allopolyploidization time of the other, T1. This produces the
situation labelled (b).

Then two new tips with time w1 are added to the diploid history. They are joined into the two external
branches of the diploid history which led to the tips at w2. One new node is created in each of these, at w3

and w4. The new nodes could be chosen anywhere in the diploid history earlier than w1. The restriced
choice is to mkae things simpler.

Merging (going right to left in Fig 4) must be the reverse of splitting. So two tetraploid subtrees can only
merge if they have a configuration like that labelled (c) in the figure. It is required that the hybridization
time of one tree is earlier than the root time of the other tree, and later than the hybridization time of the
other (0 ≤ w1 ≤ w2 in the figure). It is also required that there are two nodes in the diploid history (the
ones at w3 and w4 in the figure) which each have one child as a hybridization tip for T1, and the other child
as a hybridization tip for T2. It is not necessary that the ancestors of these two nodes at w3 and w4 be
different: the nodes at w5 and w6 could be identical.

A list of possible pairs of tetraploid subtrees is made, and if there any suitable pairs, one pair is chosen at
random, and the merge is carried out. The most recent hybridization time (w1) becomes the root time of

4

the merged tetraploid subtree T . The tree (T2) with the earlier hybridization time provides the
hybridization tips for T , and the hybridization tips of T1 are removed.

There are various Hastings ratios to be worked out. I will describe what I have implemented on 2011-11-24.
I don’t think it is complete, and it is not tested. I am using [2] as my main reference. In particular,
equations (7) and (8) are applicable.

When new node times (w3 and w4) are created, this is implemented by sampling two values u1, u2 from the
uniform distribution on [0, 1] and then using w3 = w2 + u1(w6 − w2) and w4 = w2 + u2(w5 − w2). All other
node heights are set equal to existing values (they just acquire new interpretations). This means the
determinant of the Jacobian when splitting is

∣

∣

∣

∣

∂(w)

∂(v, u)

∣

∣

∣

∣

= (w6 − w2)(w5 − w2) (3)

Here v is a vector of node times for the network with the split case, w is a vector of node times for the
network with the merged case, and u = (u1, u2). The inverse of equation (3) is used when merging. Since
the density of u1 and u2 are both 1, the ‘q’ terms in equations (7) and (8) of [2] can be omitted.

This leaves the probabilities of the moves being chosen, namely j(M, w) and j(S, w) to be accounted for,
where M and S stand for ‘merged’ and ‘split’, which are Green’s cases 1 and 2.

For splitting, if there are N tetraploid subtrees with more than one tip, there are Ns = 2N possible
splitting moves, since either child of the root can play the role of T1, the tree that gets new hybridization
tips. The probability that one tetraploid subtree is chosen to be split is 1/Ns. For merging, the number of
ordered pairs Nm of tetraploid subtrees which are suitable for merging is found. The condition on the
hybridization times means only one ordering of each pair is possible, and there are no further choices in
how to merge two trees, so there are Nm merges to choose from.

This results in a ratio (1/Nm(M))/(1/Ns(S)) = Ns(S)/Nm(M) when splitting, that is, moving from state
M to state S.

4 Results

The results are odd, so far. This is the result for zero diploids (d = 0) and twenty tetraploids (m = 20).

h count

1 21375
2 6490
3 4516
4 4638
5 5857
6 7670
7 8714
8 9187
9 7355
10 7086
11 11388
12 4267
13 1407
14 51
15 0
17 0
18 0
19 0
20 0

Note the local maxima at 1,8, and 11.

5

References

[1] Bob Mau, Michael A. Newton, Bret Larget, Bayesian Phylogenetic Inference via Markov Chain Monte

Carlo Methods, Biometrics, Vol. 55, No. 1 (Mar., 1999), pp. 1–12

[2] Peter J Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination, Biometrika (1995), Vol. 82, 4, No. 1 pp. 711–32

6

