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THIS IS PRELIMINARY

1 Introduction

This note describes a model for isolation and migration. In DENIM and IMa3 (Hey et al. (2018)), at every
time t, every branch of every gene tree existing at t is assigned to a branch in the species tree, and
migration events (times, source and destination branches) are parameters in the model which are sampled
during the MCMC sampling. The model here assigns gene tree nodes (coalescences) to species tree
branches, and uses an approximation to integrate out the migration events analytically.

My current name for the model is LUCAS = Lineages Unassigned and Coalescences Assigned to Species

1.1 Notation

(This is mainly for organizing names; full definitions in text.)

• G gene tree topology and node (coalescence) times

• Λ parameters assigning coalescences to species tree branches

• never name the species tree?

• m migration rate.

• θb population parameter in branch b

• t time measured backwards

• b, c, d indices for species tree branches

• s number of current branches

• Lb(t) lineages in branch b at time t.

• L(t) all lineages at time t.

• i, j, k indices for lineages (=gene tree branches)
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• Ăi event that lineage i goes from start branch and time to end branch and time

• t̂(i), t̆(i) start and end time of lineage i.

• b̂(i), b̆(i) start and end branch of lineage i.

• P̂bi(t) prob that i is in b at t.

• α average coalescence rate.

• Φ a stochastic rate matrix for states coalesced, together, apart.

• Tij(t) event that path(i) and path(j) do not coalesce before t

• Tij(k, t) event that neither path(i) and path(k) nor path(j) and path(k) coalesce before t

• Ni number of migrations in lineage i.

• path(i) path rootwards from lineage i.

• tmrca(i, j) the most recent common ancestor of i and j.

• allS(i) part of species tree that co-exists with i.

• ancS(i) i and lineages ancestral to i.

• descS(i) i and descendant lineages of i.

• lenS branch length of part of species tree.

• uexp(x) function (1− exp(−x))/x

2 Calculation of gene tree prior

2.1 Outline

Time t is measured backwards from present which is at t = 0. We focus on a single gene tree G. At t = 0,
the gene tree tips are assigned to species tree tips. At each coalescence in G, a parameter (to be estimated)
assigns the coalescence to one of the contemporaneous species tree branches. Call the collection of these
parameters Λ. Thus, given Λ and the assignments at t = 0, the probability that a lineage i is in a species
tree branch b is known as 0 or 1 at the start and end of every lineage. We denote the start time of i as t̂(i),

the end time as t̆(i), the start branch as b̂(i) and the end branch as b̆(i).

The migration during intervals between speciations is modeled by an s× s rate matrix M , where s is the
number of species during the interval, and where Mbd is the rate at which a lineage (migrates from species
tree branch b to species tree branch d. Migration is regarded as going backwards in time, so this is the rate
from b at smaller t to d at larger t.

We decompose the gene tree into coalescences where each coalescence ‘owns’ the two child lineages. For a
coalescence between lineages i and j at time t = t̆(i) = t̆(j) in branch b = b̆(i) = b̆(j), we find the
probability that i and j do not coalesce before t, and that both are in branch b at time t. Then we deal
with other lineages k that exist at time t, and find the probability that they do not coalesce with i or j,
given that both are in branch b at time t. For each pair of lineages considered, we split into several cases
based on the number of migrations: there are some cases for very few migrations, and one for more, where
an approximation is used. Finally we obtain a density for the coalescence time, by multiplying by θ−1

b

where θb is the usual population size parameter for branch b (long-term effective population times ploidy
times mutation rate).
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Let L(t) be the set of all lineages in G existing at t, and Lb(t) be the set of lineages in branch b at time t.
Let path(i) be the path in G from the start of i to the root. Let tmrca(i, j) be the time of the most recent
common ancestor of i and j, where path(i) and path(j) coalesce.

2.2 Comparisons

Comparison with Palczewski and Beerli (2013). There are two sources of inaccuracy in model of Palczewski
and Beerli (2013). The first is the lack of independence between probabilities that different lineages are in
a branch b at some time t. Consider two species branches b and c with equal populations sizes, and equal
migration rates m each way between them. Assume b and c do not merge for a very long time, and suppose
that i is assigned to b and j to c at t = 0 and the first coalescence is between i and j. Starting from t = 0
the lineages behave independently, but once i and j have coalesced to form k, it is only known that
Pr(k ∈ Lb(t)) = Pr(k ∈ Lc(t)) = 1/2 and the coalescent intensity between k and any other lineage l is
1/(2θ), and expected time to coalescence equal to 2θ. The true situation is that k and l are either together,
with initial intensity 1/θ and the model gives an expected time to coalescence larger than θ, or they are
apart, with initial intensity 0, and expected time to coalescence larger than 1/(2m) since a migration must
happen before the coalescence. Overall the expected time to coalescence is larger than θ/2 + 1/(4m), and
for m� 1/θ, this may be much larger than 2θ.

The second problem is that even when the lineages behave independently, as they do until the first
coalescence, the method overestimates the coalescent intensity. The problem is especially bad when
m� 1/θ, for example m = 1, 1/θ = 10000. With i, j, b, and c as above, after a time 0.005, the probability
that a migration has happened is about 0.01, and the coalescent intensity in the model is about 100 (and
growing), producing an expected time to coalescence of less than 0.015. The true value is over 0.5.

The quality of the approximation is discussed in more detail in Palczewski and Beerli (2013). The model is
suited to ‘populations’ with considerable migration between them, but not suitable for ‘species’ with small
rates of migration. The method here resolves the independence problem by introducing the parameters Λ.
This gives a ‘fresh start’ after each coalescence. The approximation is then improved by considering the
cases of 0 or 1 migrations within each pair of coalescing lineages separately, and only using the
approximation of Palczewski and Beerli (2013) for the case of at least 2 migrations.

Comparison with Hey et al. (2018) (IMa3). This models migrations explicitly. Exact, but presumably slow
with lots of migrations. Allows population size parameters to be integrated out analytically, which is not
possible in model proposed here. TODO.

2.3 Decomposition of G

Suppose that i and j are lineages and that for each of them, the time and branch of their start is known.
Let be the Tij(t) event that path(i) and path(j) do not coalesce before t. Let Tij(k, t) be the event that

neither path(i) and path(k) nor path(j) and path(k) coalesce before t. Denote by Ăi the event that
path(i) ∈ Lb̆(i)(t̆(i)), that is, that i reaches the right branch at the right time to coalesce, and similarly for

Ăj .

First we find the probability of the events Tij(t), Ăi, and Ăj . Note that this does not depend on whether
any other lineages coalesce with path(i) or path(j) before t̆(i). Secondly we find the probability of the event
Tij(k, t), given the coalescence of path(i) and path(j). We call these the ‘coalescers’ and the ‘persisters’,
respectively.

The density for t̆(i) is then found by multiplying by θ−1
b . We can then ‘forget’ about i and j and continue

with the rest of (G,Λ). Note that lineages in L(t) \ {i, j} may start at any time in [0, t) and the probability
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that they do not coalesce amongst themselves before t̆(i) is calculated when dealing with later coalescences.

Figure 1: Decomposition of G into 4 coalescences in different colours. At each coalescence, the horizontal
lines indicate the pairs of lineages between which potential coalescences are considered.

We focus on one coalescence and omit the dependence on assignments of previous coalescences to branches.
Let Nx be the number of migrations that a lineage x contains before t (this is all migrations for i and j,
but not the ones after t for k). For the ‘coalescers’,

Pr
(
Tij(t) ∧ Ăi ∧ Ăj)

)
=

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj) = (0, 0)

)
+

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj) = (0, 1)

)
+

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj) = (1, 0)

)
+

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ Ni + Nj ≥ 2

)
.

(1)
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Using the fact that i and j are independent,

Pr
(
Tij(t) ∧ Ăi ∧ Ăj)

)
=

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (0, 0)

)
Pr(Ăi ∧ Ni = 0) Pr(Ăj ∧ Nj = 0) +

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (0, 1)

)
Pr(Ăi ∧ Ni = 0) Pr(Ăj ∧ Nj = 1) +

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (1, 0)

)
Pr(Ăi ∧ Ni = 1) Pr(Ăj ∧ Nj = 0) +

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ Ni + Nj ≥ 2

)
.

(2)

For the ‘persisters’, we want

Pr
(
Tij(k, t) | Ăi ∧ Ăj

)
= Pr

(
Tij(k, t) ∧ Ăi ∧ Ăj

) /
Pr(Ăi ∧ Ăj) (3)

and the numerator on the right hand side can be expanded as

Pr
(
Tij(k, t)) ∧ Ăi ∧ Ăj

)
=

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 0, 0)

)
+

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 0, 1)

)
+

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 1, 0)

)
+

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (1, 0, 0)

)
+

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (1, 1, 0)

)
+

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)

)

(4)

The first five terms can be expressed like

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (ni, nj , nk)

)
=

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (ni, nj , nk)
)
×

Pr
(
Ăi ∧ Ni = ni

)
Pr
(
Ăj ∧ Nj = nj

)
Pr (Nk = nk)

(5)

This is as far as we take the general case. Next we look for an approximation in the case of a simple
migration matrix.

3 Special case for M

From now on, we restrict the case where the migration rate is the same between any pair of
contemporaneous species tree branches, so Mbd = m for every b 6= d, and Mbb = −(s− 1)m. Let I be the
s× s identity matrix and U be an s× s matrix filled with 1/s. Then M = smU − smI and it is
straightforward to show that for any real number x, we have exp(Mx) = U + (I − U)e−smx.
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3.1 Probability that a lineage is in a given branch at a given time

Consider a single lineage i in G. Suppose t ∈ [t̂(i), t̆(i)] and that b is a branch existing at t. Let

P̂bi(t) = Pr(path(i) ∈ Lb(t)|i ∈ Lb̂(i)(t̂(i))). Suppose t̂(i) ≤ v ≤ t ≤ t̆(i), and that no speciations occur

during [v, t]. Then the behaviour of i is determined by the migration matrix M during [v, t] so

Pr(i ∈ Lb(t)|i ∈ Lc(v)) = [exp(M(t− v))]bc. (6)

If species tree branches b and c merge to form branch d at time t, we have

P̂di(t) = P̂bi(t) + P̂ci(t). (7)

Using these equations we can calculate P̂bi(t) at any time t ∈ [t̂(i), t̆(i)], starting with the assignment b̂(i)
at t̂(i).

Now we focus on the special case for M . Let [u, v] be an interval between speciations, and let s be the

number of branches during this interval. We can assume that P̂ci(u) is known for all c. Using equation (6)
in the special case, we have

P̂bi(t) = s−1(1− exp(−sm(t− u))) + exp(−sm(t− u))P̂bi(u). (8)

Thus we can find P̂bi(t̆(i)) if i ends during [u, v], and P̂bi(v) if not, ready for the next interval. Finally

Pr(Ăi) = P̂b̆(i)i(t̆(i)) and Pr(Ăi) = P̂b̆(j)j(t̆(j)).

3.2 Probability of migration counts for ‘coalescers’ case

If it is known that a single migration of a lineage i occurs, and that the destination of the migration is in
some part of the species tree, then this destination is uniformly distributed over all the species branches in
the part. This observation forms the basis of the calculations in this section.

Let allS(i) be the part of the species tree that exists between t̂(i) and t̆(i). Let ancS(i) be the part of the

species tree that is ancestral to b̂(i) at t̂(i), between t̂(i) and t̆(i). Let descS(i) be the part of the species

tree that is descendant to b̆(i) at t̆(i), between t̂(i) and t̆(i). Thus ancS(i) the part that path(i) can reach

without migrating, and descS(i) is the part of the species tree from which b̆(i) at t̆(i) can be reached
without migration. Either ancS(i) and descS(i) are disjoint, or ancS(i) is contained in descS(i). Let
lenS(X) denote the total branch length of a part X of the species tree.

Suppose that t ∈ [t̂(i), t̆(i)]. The migration intensity at time t is = (|B(t)| − 1)m which is a step function
which changes at speciation times. The total migration intensity Fmig(i) can be written as an integral of
this function over [t̂(i), t̆(i)]. The result is equal to the product of m and the total branch length between
t̂(i) and t̆(i), minus (t̆(i)− t̂(i)). Alternatively,

Fmig(i) = m lenS(allS(i) \ ancS(i)) (9)

The distribution of counts follows a Poisson distribution, so we have

Pr(Ni = 0) = exp [−Fmig(i)] (10)

Pr(Ni = 1) = Fmig(i) exp [−Fmig(i)] (11)

with similar expressions for j. Then Pr(Ni + Nj ≥ 2) can be found by subtracting the three other
probabilities from from 1.
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3.3 Probability of migration counts for ‘persisters’ case

Let l ∈ {i, j}. We have Pr(Nl = 0) = exp [−Fmig(l)] as the last sub-section. If ancS(l) and descS(l) are

disjoint, Pr(Ăl|Nl = 0) = 0. If ancS(l) is contained in descS(l), then Pr(Ăl|Nl = 0) = 1.

Likewise, we can write Pr(Nl = 1 ∧ Ăl) as Pr(Ăl|Nl = 1) Pr(Nl = 1). We have Pr(Nl = 1) =
Fmig

(
t̂(l), t̆(l)

)
exp

[
−Fmig

(
t̂(l), t̆(l)

)]
as in the last subsection. Then

Pr(Ăl|Nl = 1) =
lenS(descS(l) \ ancS(l))

lenS(allS(l) \ ancS(l))
(12)

The values for Pr(Nk = 0) and Pr(Nk = 1) as calculated as in the last sub-section, since these do not
depend on what i or j do. Finally Pr(Nl + Nk ≥ 2 ∧ Ăl) can be found by subtracting the three other
probabilities from from Pr(Ăl).

3.4 The probability of no coalescences: 0 or 1 migration

The ‘coalescers’ case with Ni = 0 ∧ Nj = 0, and the ‘persisters’ case with Ni = 0 ∧ Nk = 0 are
straightforward, since the location of path(i), path(j), and path(k) is known at all t. During the times that
they are together in a branch c, the coalescent intensity is θ−1

c . (It’s like a bit of a standard multispecies
coalescent calculation.)

Suppose that exactly one migration of a lineage x occurs during some interval of length w during which a
branch c exists, that lineage y is in c during the interval, and that the migration of x is either from or to c.
For convenience we define the function uexp(x) = (1− exp(−x))/x. Then the probability that there is no
coalescence of x and y during the interval is

1− exp(−wθ−1
c )

wθ−1
c

= uexp(wθ−1
c ). (13)

This can be shown by using the fact that the migration time is uniformly distributed within the interval,
and integrating it out. The result is the same whether the time that x and y spend together is at the start
or end of the interval.

The method for a single migration is to split the species tree into intervals, between t̂(i), t̂(j), or t̂(k) as
appropriate at the start, and t̆(i) = t̆(j) at the end, and also at any speciation times within the range.
Within each interval, we look at each branch segment available for the destination of the migration. For a
‘persister’ k, this is restricted to descS(i) ∪ descS(j). This allows us to calculate the probability that the
migration went to each branch segment. Then, conditioning on each branch segment, we can find the
probability of no coalescence before the segment and the probability of no coalescence after the segment
(since we know where both lineages are before and after the segment), and use equation (13) for the
segment itself.

In the ‘persisters’ case, with (Ni,Nj ,Nk) = (1, 1, 0) it is necessary to consider two segments, one for each

migration. I’ve only worked out the spacial case of a fixed number of species, in section 4. TODO

3.5 Approximate Markov model for at least 2 migrations

We use a three state Markov process. The three states are‘coalesced’ (1) , ‘together’ (2) (both lineages in
same branch, but not coalesced) and ‘apart’ (3). The approximation does not account for different
population sizes in different branches, but instead uses an overall average. The idea is that the lineages
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could be ‘anywhere’ when there are a lot of migrations (although ‘at least two’ is not really a lot.) During
an interval when there are s branches, the mean coalescence rate can be approximated by
α = s−1(

∑
b θ

−1
b ). [I think this is better than taking the reciprocal of the θb’s.] The process determined by

the following stochastic rate matrix for two paths such as path(i) and path(j).

Φ =

0 0 0
α −(α+ 2(s− 1)m) 2(s− 1)m
0 2m −2m

 . (14)

Given the probabilities that path(i) and path(j) are together or apart at the start of a period of duration u,
then the probability that they are together or apart at the end of the period can be found from exp(Φu).
For example exp(Φt)32 is the probability that path(i) and path(j) are together at time t, given they were
apart at time 0, and exp(Φt)32 + exp(Φt)33 is the probability that they have not coalesced by time t. Let
Yij(t) be the state (1,2, or 3) of lineages i and j at time t.

Suppose t̂(i) ≤ t̂(j), that is, that i starts first. During the interval [t̂(i), t̂(j)], we can find the probability

that i arrives in b̂(j) by t̂(j), using P̂bi(t) from section 3.1.

At a speciation at t, where s branches become s− 1, the value of Pr(Yij(t) = 2) just after the speciation is
found from the value of Pr(Yij(t) = 2) + (s(s− 1)/2)−1 Pr(Yij(t) = 3) just before the speciation. Likewise
the value Pr(Yij(t) = 3) just after the speciation is found from the value of
Pr(Yij(t) = 2)− (s(s− 1)/2)−1 Pr(Yij(t) = 3) just before.

Φ can be exponentiated analytically. This code finds elements of exp(Φt) in two ways

library(expm)

s = 5

a = 1

m = 0.05

t = 1

Q = matrix(c(0, a, 0, 0, -(a+2*(s-1)*m), 2*m, 0, 2*(s-1)*m, -2*m), nrow=3, ncol=3)

E = expm(Q*t)

print(E)

x = m * s + a/2

y = 0.5 * sqrt(4*x^2 - 8 *a*m)

Ext = exp(-x*t)

shyt = sinh(y*t)

chyt = cosh(y*t)

Q32 = (2 * m / y) * Ext * (shyt)

Q33 = (1/y) * Ext * ((x - 2*m) *shyt + y * chyt)

Q22 = (1/y) * Ext * ((2*m - x)*shyt + y * chyt)

Q23 = (s-1) * Q32

print(matrix(c(Q22,Q32,Q23,Q33), nrow=2, ncol=2))

3.6 The probability of no coalescences: at least 2 migrations

For the ‘coalescers’ case, we use Φ to find the probability that i and j are together but not coalesced by
time t, and multiply by

P̂bi(t)P̂bj(t)∑
c P̂ci(t)P̂cj(t)

(15)
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to find the probability that i and j are in b, given that they are together, so

Pr
(
Tij(t) ∧ Ăi ∧ Ăj ∧ Ni + Nj ≥ 2

)
=

Pr
(
Tij(t) ∧ Ăi ∧ Ăj | Ni + Nj ≥ 2

)
Pr(Ni + Nj ≥ 2) '

P̂bi(t)P̂bj(t)∑
c P̂ci(t)P̂cj(t)

Pr(Yij(t) = 2) Pr(Ni + Nj ≥ 2)

(16)

For the ‘persisters’ case, we assume approximate independence of (Ăi ∧ Ăj) and the other events and
estimate

Pr
(
Tij(k, t) ∧ Ăi ∧ Ăj ∧ (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)

)
'

Pr (Tij(k, t) ∧ (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)) Pr(Ăi ∧ Ăj) =

Pr (Tij(k, t) | (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)) Pr(Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2) Pr(Ăi ∧ Ăj)

(17)

and then assume approximate independence of (tmrca(i, k) ≥ t) and (tmrca(j, k) ≥ t) given the condition
on counts, and use Φ to estimate these, so that

Pr (Tij(k, t) | (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)) '
(Pr(Yik(t) = 2) + Pr(Yik(t) = 3)) (Pr(Yjk(t) = 2) + Pr(Yjk(t) = 3))

(18)

4 Details for fixed number of species

Suppose there are s species at all times - a simple island model, no tree. I use I[] as the indicator function,
equal to one if its argument is true, else zero. We find values for equation (2) then equation (4). Let

b = b̆(i) = b̆(j), and t = t̆(i) = t̆(j).

4.1 ‘coalescers’

Let ui = max(t̂(j)− t̂(i), 0). Let uj = max(t̂(i)− t̂(j), 0). Let w = max(t̂(i), t̂(j))− t. Then ui is the time i
spends alone, uj is the time that j spends alone, and w is the time they spend together.

4.1.1 Migration counts

Pr(Ni = 0) = exp(−(s− 1)m(ui + w))

Pr(Ni = 1) = (s− 1)m(ui + w) exp(−(s− 1)m(ui + w))

Likewise
Pr(Nj = 0) = exp(−(s− 1)m(uj + w))

Pr(Nj = 1) = (s− 1)m(uj + w) exp(−(s− 1)m(uj + w))

Then

Pr(Ni + Nj ≥ 2) = 1− Pr(Ni = 0) Pr(Nj = 0)− Pr(Ni = 0) Pr(Nj = 1)− Pr(Ni = 1) Pr(Nj = 0)
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4.1.2 Joint probabilities of arrival and counts

Pr(Ăi ∧ Ni = 0) = Pr(Ăi|Ni = 0) Pr(Ni = 0) = I[b̂(i) = b] Pr(Ni = 0)

Pr(Ăi ∧ Ni = 1) = Pr(Ăi|Ni = 1) Pr(Ni = 1) = I[b̂(i) 6= b]× (s− 1)−1 Pr(Ni = 1)

since i must start elsewhere than branch b, and it has s− 1 branches to go to, one of which is b. Likewise

Pr(Ăj ∧ Nj = 0) = I[b̂(j) = b] Pr(Nj = 0)

Pr(Ăj ∧ Nj = 1) = I[b̂(j) 6= b]× (s− 1)−1 Pr(Nj = 1).

4.1.3 The (Ni,Nj) = (0, 0) case

When a coalescence is possible in the (0,0) case (that is, when b̂(i) = b̂(j) = b),

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (0, 0)

)
= exp(−θ−1

b w)

4.1.4 The (Ni,Nj) = (0, 1) case

When a coalescence is possible in the (0,1) case (that is, when b̂(i) = b and j migrates to b),

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (1, 0)

)
= (uj + w)−1uj exp(−θ−1

b w) + wuexp(wθ−1
b )

4.1.5 The (Ni,Nj) = (1, 0) case

When a coalescence is possible in the (1,0) case (that is, when b̂(j) = b and i migrates to b), i may migrate
to b before t̆(j) or after, and

Pr
(
Tij(t) | Ăi ∧ Ăj ∧ (Ni,Nj) = (1, 0)

)
= (ui + w)−1ui exp(−θ−1

b w) + wuexp(wθ−1
b )

4.1.6 The Ni + Nj ≥ 2 case

Let v = |t̂(i)− t̂(j)| be the time that only one of i and j exist. Then the probability that i and j are
together at tmax = max(t̂(i), t̂(j)) is

Pr(Yij(tmax) = 2) = (1/s)(1− exp(−smv)) + exp(−smv)I[b̂(i) = b̂(j)] (19)

Then
Pr(Yij(t) = 2) = exp(Φw)32(1− Pr(Yij(tmax) = 2)) + exp(Φw)22 Pr(Yij(tmax) = 2) (20)

and

Pr
(
tmrca(i, j) ≥ t ∧ Ăi ∧ Ăj ∧ (Ni + Nj ≥ 2)

)
'

P̂bi(t)P̂bj(t)∑
c P̂ci(t)P̂cj(t)

Pr(Yij(t) = 2) Pr(Ni + Nj ≥ 2)
(21)
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4.2 ‘persisters’

Let ui be the time that i spends alone, before j or k begin, or zero if j or k start first, so
ui = max(0,min(t̂(j), t̂(k))− t̂(i)). Likewise, define uj and uk. Let vij be the time during which i and j
exist, but k does not, so vij = max(0, t̂(k)−max(t̂(i), t̂(j))). Likewise define vik and vjk. Only one of
ui, uj , uk and one of vij , vik, vjk can be nonzero. Let w be the time during which all three exist, so
w = t−max(t̂(i), t̂(j), t̂(k)). we also set ti = t− t̂(i), tj = t− t̂(j), tk = t− t̂(k). These are the duration of i
and j, but only part of the duration of k.

4.2.1 Migration counts

Pr(Nk = 0) = exp(−(s− 1)mtk)

Pr(Nk = 1) = (s− 1)mtk exp(−(s− 1)mtk)

with similar expressions for Ni and Nj , and

Pr(Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2) = 1− Pr(Ni = 0) Pr(Nj = 0) Pr(Nk = 0) −
Pr(Ni = 0) Pr(Nj = 0) Pr(Nk = 1)− Pr(Ni = 0) Pr(Nj = 1) Pr(Nk = 0) −
Pr(Ni = 1) Pr(Nj = 0) Pr(Nk = 0)− Pr(Ni = 1) Pr(Nj = 1) Pr(Nk = 0)

4.2.2 Joint probabilities of arrival and counts

We have Pr(Ăi ∧ Ni = 0), Pr(Ăj ∧ Nj = 0), Pr(Ăi ∧ Ni = 1), and Pr(Ăj ∧ Nj = 1) from section 4.1.1. We
do not need anything for k.

4.2.3 The (Ni,Nj ,Nk) = (0, 0, 0) case

This case is impossible unless b̂(i) = b̂(j) = b. Given this, if b̂(k) 6= b no coalescence between k and i or j is

possible, and if b̂(k) = b, it may coalesce during the intervals that k and i or j co-exist. Thus

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 0, 0)
)

= I[b̂(k) 6= b] + I[b̂(k) = b] exp(−(vik + vjk + 2w)θ−1
b )

4.2.4 The (Ni,Nj ,Nk) = (0, 0, 1) case

Again, this case is impossible unless b̂(i) = b̂(j) = b. There is no coalescence unless b̂(k) 6= b and k migrates

to b. Given b̂(k) 6= b, the probability that k migrates to b is 1/(s− 1). It may arrive in b before i or j have
started, when one exists, buit not the other, or after both have started. The probabilities of these three
arrival types are equal to the fraction of tk during which they can occur. Thus

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 0, 1)
)

= I[b̂(k) = b] +

I[b̂(k) 6= b] (s− 1)−1 t−1
k ×

(
uk exp(−(vik + vjk + 2w)θ−1

b ) +

(vik + vjk)uexp(ui + uj)θ
−1
b ) exp(−2wθ−1

b ) + w uexp(2wθ−1
b )
)
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4.2.5 The (Ni,Nj ,Nk) = (0, 1, 0) case

This case is impossible unless b̂(i) = b and b̂(j) 6= b. If b̂(k) is neither b nor b̂(j), there can be no coalescence.

If b̂(k) = b and b̂(k) 6= b̂(i), then k and i are together for a time vik + w. The lineage j may migrate to b
before k starts during an interval of length uj + vij , or while k exists, during an interval of length vjk + w.

If b̂(k) 6= b and b̂(k) = b̂(j), then k cannot coalesce with i, but may coalesce with j before j leaves b̂(k).

Note b̂(k) = b and b̂(k) = b̂(j) cannot happen, since b̂(j) 6= b.

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (0, 1, 0)
)

= I[b̂(k) 6= b] I[b̂(k) 6= b̂(j)] +

I[b̂(k) = b] I[b̂(k) 6= b̂(i)] exp(−(vik + w)θ−1
b ) ×

t−1
j

(
(uj + vij) exp(−(vjk + w)θ−1

b ) + (vjk + w)uexp
(
(vjk + w)θ−1

b

))
+

I[b̂(k) 6= b] I[b̂(k) = b̂(j)] t−1
j

(
(uj + vij) + (vjk + w)uexp

(
(vjk + w)θ−1

b̂(k)

))
4.2.6 The (Ni,Nj ,Nk) = (1, 0, 0) case

The same as last subsection 4.2.5 with i and j swapped.

4.2.7 The (Ni,Nj ,Nk) = (1, 1, 0) case

This is impossible unless b̂(i) 6= b and b̂(j) 6= b. Lineages i and j behave independently, so we can deal with

them one at a time and multiply. If b̂(k) = b, then i may migrate to b before k starts during an interval of
length ui + vij , or while k exists, during an interval of length vik + w. Similarly for j.

If b̂(k) 6= b, then i may migrate away from b̂(k) before k starts during an interval of length ui + vij , or while
k exists, during an interval of length vik + w. Similarly for j.

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni,Nj ,Nk) = (1, 1, 0)
)

=

I[b̂(k) = b] ×

t−1
i

(
(ui + vij) exp(−(vik + w)θ−1

b ) + (vik + w)uexp
(
(vik + w)θ−1

b

))
×

t−1
j

(
(uj + vij) exp(−(vjk + w)θ−1

b ) + (vjk + w)uexp
(
(vjk + w)θ−1

b

))
+

I[b̂(k) 6= b] ×(
I[b̂(k) 6= b̂(i)] + I[b̂(k) 6= b̂(i)]t−1

i

(
ui + vij + (vik + w)uexp

(
(vik + w)θ−1

b̂(k)

)))
×(

I[b̂(k) 6= b̂(j)] + I[b̂(k) 6= b̂(j)]t−1
j

(
uj + vij + (vjk + w)uexp

(
(vjk + w)θ−1

b̂(k)

)))
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4.2.8 The Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2 case

We assume approximate independence to obtain

Pr
(
Tij(k, t)

∣∣ Ăi ∧ Ăj ∧ (Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)
)
'

Pr(tmrca(i, k) ≥ t) Pr(tmrca(j, k) ≥ t) Pr(Ăi ∧ Ăj) Pr(Ni + Nk ≥ 2 ∨ Nj + Nk ≥ 2)

and Pr(tmrca(i, k) ≥ t) and Pr(tmrca(j, k) ≥ t) can be approximated using Φ.

Let v = |t̂(i)− t̂(j)| = (ui + vij + uk + vjk) be the time that only one of i and k exist. The probability that
i and k are together at tmax = max(t̂(i), t̂(k)) is

Pr(Yik(tmax) = 2) = (1/s)(1− exp(−smv) + exp(−smv)I[b̂(i) = b̂(k)] (22)

Then the probability that i and k have not coalesced by t, namely Pr(tmrca(i, k) ≥ t), is approximated as

Pr(Yik(t) = 2) + Pr(Yik(t) = 3) =

exp(Φw)32(1− Pr(Yik(tmax) = 2)) + exp(Φw)22 Pr(Yik(tmax) = 2) +

exp(Φw)33(1− Pr(Yik(tmax) = 2)) + exp(Φw)23 Pr(Yik(tmax) = 2)

(23)

There is a similar expression for Pr(tmrca(j, k) ≥ t).
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