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Abstract

The realization probability of a node in a game tree represents the probability that the moves leading to the
node will actually be played, and is the product of the probabilities of the moves along the path from root to
node. The tree search algorithm used by AlphaZero chooses the next node to expand by using a score based on
an upper confidence bound. This paper describes a tree search algorithm which is similar, except that it uses a
score based on realization probabilities instead. The focus here is on game play, given a function which provides
an evaluation of the game state, and a policy, which provides a probability for each move. In the method
introduced here, a function similar to softmax is used to convert evaluations into a policy at each node that has
any evaluated children. These derived policies are used to refine the initial policies. As a proof of concept, the
performance of algorithm is compared to the upper confidence algorithm on simulated data for non-existent
games. The simulations are designed to produce game trees, estimated evaluations, and estimated policies with
similar statistical properties to those of real games. On this data, the proposed algorithm shows superior
performance. [chess, shogi, go, Monte Carlo tree search, upper confidence trees]

1 Introduction

This paper describes a tree search algorithm for games such as chess, shogi, and go. Traditional approaches use
alpha-beta search. However, most of the successful ones, such as the chess program Stockfish
(https://stockfishchess.org/), use a variety of other heuristics to the limit the breadth of the search. Elnaggar
et al. (2014) provides a general survey of such methods. Chess has a branching factor of around 30, so a search tree
using alpha-beta search alone will have a branching factor of at least 5 or 6. Actually the search trees in Stockfish
have a branching factor around 2. The heuristics are often game-specific.

The tree search algorithm used by AlphaZero Silver et al. (2018) is simpler and more generic, with only a few
parameters to be adjusted for particular games and evaluation functions. We will refer to this algorithm as the
PUCT algorithm (policy + upper confidence tree) instead of MCTS (Monte Carlo tree search). The algorithm is
deterministic, and the ‘Monte Carlo’ is liable to cause confusion. PUCT uses both evaluations, which are estimates
of the expected game score given a game state, and a policy vector which estimates the probability that each move
from a given state is the optimal move. PUCT updates the evaluations as the tree grows, and uses these updated
evaluations, plus another term to encourage exploration, when choosing the next node to expand. The combination
can be interpreted as ‘exploitation + exploration’, or as an upper confidence bound for the evaluation.

The algorithm presented here has much in common with PUCT, but uses realization probabilities, and represents
an attempt to understand the problem as one of statistical inference. The realization probability of a node
represents the probability that the moves leading to the node will actually be played (Tsuruoka et al., 2002). The
root of the tree has realization probability equal to 1. There are then transitional probabilities at each node which
represent the probabilities of the moves from that node. By multiplying the transitional probabilities along the
path from the root, the realization probability of any node can be found. The list of transitional probabilities for a
node is essentially the same thing as a policy vector, and in this paper we regard them as interchangeable. We will
refer to the evaluations and policies that are provided to the algorithm as ‘static evaluations’ and ‘static policies’
when there is a need to distinguish them from updated values.
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The static policies are our initial estimate of the transitional probabilities. The basic approach described here is to
refine these using evaluations, and to use their current values to choose which node to expand next. When a node
is expanded, the evaluations are updated in the same way as PUCT. Evaluations can be converted into a policy
using a softmax, for example. The softmax can be improved upon, as we will see in section 2.2. We also take into
account the uncertainty in the policy and evaluation estimates, using the concept of effective sample sizes (ESSs).
The guiding principle behind the choice of node to expand is to make the number of times each node in the tree has
been visited approximately proportional to its realization probability. Section 2.3 describes some ways of doing
this. We call the proposed algorithm ESPRIT (Effective Sample size and Policy Refinement In Trees).

As a proof of concept, we compare this algorithm against PUCT on simulated trees for a non-existent game. We
take some trouble to simulate trees, estimated evaluations, and estimated policies that have similar statistical
properties to those in real games. The main advantage of simulations is that the true evaluations and best moves
are known, so the regret can be calculated exactly. The main disadvantage is that success on such data may fail to
translate to real games and evaluation functions.

An important statistical property of an evaluation function is the distribution of its errors. One can use existing
chess engines to compare their evaluations for long and short times. Taking the slow evaluations as an
approximation to the truth, the shape of the noise distribution of the fast evaluations can be estimated. Naturally
the results depend on the engines and the board positions chosen, but it is a common observation that a few
evaluations, say one in a thousand, will be more than 6 standard deviations away from the true evaluation. This
should not be surprising, nor be viewed as a special feature of particular games and evaluation functions.
Real-world data is often like this and can modeled with appropriate probability distributions (Lange et al., 1989;
Ripley, 1996, p39).

Realization probabilities have been used in game tree search before, especially for shogi. In most methods, the
realization probabilities are used to limit depth in alpha-beta search. They were introduced in Tsuruoka et al.
(2002), where the transitional probabilities are derived from games played by professional shogi players. There is
some further work along these lines, including Winands and Björnsson (2008) and Kimura et al. (2011).

One approach, developed in Kirii et al. (2017) and Igarashi et al. (2019) uses realization probabilities on their own
for game tree search. This method is designed for use in the context of learning. It uses softmax to convert
evaluations to transitional probabilities. The search iteratively chooses a move by sampling from the transitional
probabilities at each node. This means the next node to be expanded is chosen with a probability proportional to
its realization probability.

There have been various other attempts to improve the PUCT algorithm. Some recent ones are Grill et al. (2020),
which we discuss further in section 2.4, Dam et al. (2020) and Hamrick et al. (2020).

2 Search algorithms

We consider a node s with M moves 1, . . . ,M . We can also regard s as a game state, for example a board position
in a chess game. A move m may refer to a child node or to an unexpanded node. Each node is assumed to have a
static evaluation in [0, 1] which is an estimate of the expected game score and a static policy of form
p = (p1, . . . , pM ) where pm is an estimate of the probability that m is the best move. The number of static
evaluations at or below a node m is nm. The recursive evaluation of node m is vm from the point of view of the
player at node m. If nm > 0, this is the mean of the static evaluations at or below node m, each converted to the
point of view of the player at node m. When nm is zero, vm is set to zero too. For both PUCT and ESPRIT, other
choices for vm when nm = 0 can be considered, but I am not aware of anything that is clearly better for either
algorithm.

2.1 PUCT

The PUCT formula used here is based on my interpretation of file pseudocode.py in the supplementary
information to Silver et al. (2018). Note that ns = 1 +

∑
m nm, that is, the number of visits to s, which differs
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slightly from some other descriptions in the literature, which omit the 1. The formula is used to provide values
(vm + um) for guiding the search, where um is given, for each move m from a node s, by

um = C

√
ns

1 + nm
pm (1)

where

C = c0 + log

(
1 + ns + c1

c1

)
(2)

and where c0 and c1 are parameters. AlphaZero used c0 = 1.25 and c1 = 19652 so C is a slowly increasing function
of ns. The next node to be expanded is found iteratively from the root, choosing the move at each node which
maximizes (vm + um), until an unexpanded node is found. Evaluations are then updated along the path back to the
root.

2.2 ESPRIT

2.2.1 The formulas

We first convert the vm’s and nm’s to a policy q = (q1, . . . , qM ), and then to the final policy r = (r1, . . . , rM ) which
combines q with the static policy p. We set r = p if all nm are zero, and assume at least one is nonzero from now on.

Suppose the vm’s are sorted so that v1 ≥ v2 ≥ · · · ≥ vM . (This is not necessary for the algorithm but simplifies the
notation.) First we set

zm = nm
α (3)

where α is a parameter. We set Z to be the mean of these over moves:

Z =

∑
j zm

M
. (4)

Now we can define the key function f() as

f(x; γ, σ) =
(

1 +
x

σZ−1/2

)−γ
(5)

where γ and σ are parameters. Policy q is now obtained by

q′m = f(v1 − vm; γ, σ) and qm =
q′m∑
j q
′
j

(6)

Finally the transitional probabilities r1, . . . , rM are then obtained by

r′m =
λpm + zmqm
λ+ zm

and rm =
r′m∑
j r
′
j

(7)

where λ is a parameter. We explain how the rm are used to search the tree in section 2.3.

2.2.2 Motivation

We provide some explanation and justification for the choices made here. Each vm is the mean of nm values, and if
they were independent and identically distributed random variables, the effective sample size (ESS) would be nm,
and the variance of vm would scale with 1/nm. The evaluations in a game tree are certainly not independent, and
the ESS will be less than nm. Equation (3) captures this idea (with α < 1). We do not actually want the ESSs for
the individual vm’s but rather for functions which involve all of them. The way that the zm are used will be
discussed after explaining other aspects.
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Consider a node with a particular move b ≥ 3, with n1, n2, nb all large and suppose that neither (v1 − vb) and
(v2 − vb) are close to zero. Nonetheless b may be the best move. This is the sort of situation that search algorithms
struggle with: usually evaluations based on much lookahead are accurate, but occasionally big errors are made. It
is extremely unlikely that both v1 and v2 are severe overestimates, so the probability that b is the best move is
approximately the probability that the noise distribution for vb generates a value smaller than −(v1 − vb). This
makes the tails of the noise distributions very important, and suggests that for nodes with many visits, a power law
curve like f(x; γ, σ) is more suitable than an exponential which leads to a softmax. We use (v1 − vm) to preserve
the location independence of the softmax.

Note that for unexpanded moves (when nm = 0 and vm = 0), equation (7) sets r′m = pm since zm = 0 for
unexpanded moves. However, equation (6) sets q′m = f(v1; γ, σ), so that the unexpanded moves do have some
influence on the transitional probabilities for expanded moves. For example, increasing the number of unexpanded
moves reduces the influence of expanded moves on r, other things being equal.

Z1/2 plays a role analogous to the ‘learning rate’ in Boltzman exploration. The statistical interpretation is that Z
approximates the ESS per move, so that 1/Z is expected to be proportional to the variance of the noise in the vm’s,
so that Z−1/2 is a suitable scaling factor for f(). I have no reason to suppose that equation (4) has the right form.
In the situation involving moves 1, 2, and b described above, setting Z to the harmonic mean of z1, z2, and zb rather
than the mean seems appropriate, but a harmonic mean makes no sense if there are any unexpanded moves. An
exact analysis of the general situation appears difficult, involving summing over all permutations of {1, 2, . . . ,M}.

Some examples may clarify the behavior of ESPRIT when Z is small. If n1 = 1 with the rest 0, then Z−1/2 =
√
M ,

so the ratio of q1 to qm for m > 1 is 1 : f(v1/(σ
√
M)) representing large uncertainty in this case. Suppose

n1 = n2 = 1 with the rest 0, and that v1 and v2 are noisy estimates of true evaluations t1 and t2. Especially when
v1 and v2 are close, there is uncertainty about whether t1 > t2 or t2 > t1, and hence whether q1 or q2 should be
biggest. Thus q1 and q2 should be close in this case and Z−1/2 =

√
M/2 achieves this.

Equation (7) can be viewed as an approximate Bayesian update of the initial policy vector using the policy based
on the number of ‘effective observations’ zm of the latter. The parameter λ can be viewed as a count of prior
observations in the static policy. In this equation, qm depends more on on vm than other vj most of the time, but
zm is an approximation which might be improved upon.

2.2.3 Choosing parameter values

We have defined four parameters, namely: α for effective sample size; γ which determines the shape of the curve for
converting vm’s to qm’s; σ, the scale for this curve; and λ, the weight given to the pm’s versus the qm’s when
combining them. We now consider how to choose their values.

The optimal form of the function which provides the ESS of an evaluation based on nm static evaluations depends
on the algorithm itself, so the best choice probably requires a very deep analysis. It appears that zm =

√
nm is

about right for ESPRIT on the simulated data used here, so α = 0.5 is a sensible choice.

The parameters γ and σ are important. If large values are used for both γ and σ, formula (5) becomes close to
exponential. As argued above, this is not likely to be optimal. The parameter σ determines the sharpness of the
policy derived from evaluations. Large σ makes broad shallow trees; small σ makes narrow deep trees. It appears
that γ = 3, σ = 0.07 is a good choice for the data used here.

The optimal value of λ depends on the relative accuracy of the static policy and the static evaluations. It appears
that λ = 1 is reasonable for the data here.

2.3 Searching using realization probabilities

For the results in section 4, we use a very similar algorithm to PUCT. The next node to be expanded is found
iteratively from the root, choosing the move at each node which maximizes a score until an unexpanded node is
found. The only difference is that argmaxj(vj + uj) (from equation 1) is replaced by argmaxj(rj/(nj + 1)). The
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idea is that moves with large rm/(nm + 1) are under-represented. To make a final move choice at the root, either
argmaxj(rj) or argmaxj(nj) can be used. We use the latter here, the same as PUCT.

Realization probabilities are suited to parallel tree search. The transitional probabilities give a more principled way
of allocating threads than a score like the PUCT formula of equation (1) (but see the next section 2.4). As
mentioned in the introduction, the iterative stochastic method of Igarashi et al. (2019) can be used to choose a
node to expand, and this method can be parallelized.

1 1 1

2 2 2 2

3

3

3

3

Figure 1: Illustration of a SIMD algorithm for ESPRIT, with 4 threads and a tree with branching factor 3, after three
waves. The fourth wave will chose among the unexpanded moves, which are shown as dotted lines.

We briefly describe an algorithm suitable for SIMD architectures. The idea is to expand the tree in a series of
‘waves’ (see Figure 1) using B threads. Each wave contains up to B nodes, each of which is one ply deeper than
some node in some previous wave. Thus wave w contains nodes of depths no more than w. To construct the next
wave, B threads are assigned to the root, and the wave is advanced one depth at a time in a series of steps. Within
one step a node x can be assigned some range {i : b0 ≤ i < b1} of threads. The transitional probabilities are
summed over expanded and unexpanded moves, and a decision is made about how many threads to assign to
unexpanded moves from x. Then the remainder are allocated to child nodes in approximate proportion to their
transitional probabilities for the next step. Eventually a thread will either be assigned to an unexpanded move, or
will idle because it reached a node with no children and fewer than b1 − b0 moves. Evaluations can be backed up to
the root in parallel too.

2.4 Reinterpreting PUCT

PUCT is described as improving the evaluations given a policy. I have described ESPRIT as improving the policy
given evaluations. I do not think this distinction is of much importance, since both tasks must be solved together.
Since C and ns do not vary with m, (

pm +

(
1 + nm
ns

) √
ns
C

vm

)
/(1 + nm) (8)

has the same order properties as formula (1) and will result in the same searches. This can be be rewritten as

xm = pm +

(√
ns
C

vm

)
p′m (9)

where p′m = (1 + nm)/ns and moves are selected using argmaxj(xj/(1 + nj)). Now p′ is almost a policy based on
visit counts (it requires multiplication by ns/(ns +M − 1) to normalize it), so PUCT can be reinterpreted as a kind
of policy refinement. Compare equation (7) for the transitional probabilities in ESPRIT. This reinterpretation
could be used to allocate threads in a parallelized version of PUCT, as outlined in scetion 2.3.

The algorithms outlined in section 2.3 can therefore be applied to PUCT.
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In Grill et al. (2020), another interpretation of PUCT, as regularized policy optimization, is described. They derive
an updated policy using

ŷ = argmaxy∈S
∑
j

vjyj −R(y, p) (10)

where S is the probability simplex {y ∈ RM : yj ≥ 0,
∑
j yj = 1}, and R(y, p) is a regularization term, which

prevents y from becoming ‘too far’ from p, and is weighted so that its effect diminishes as the number of
evaluations increases. The optimal value ŷ is not used to provide realization probabilities, but instead is used in a
formula which replaces um in equation (1). For a particular choice of R(), PUCT can be reinterpreted as
regularized policy optimization.

3 Simulating game trees

3.1 Outline

The simulation aims to mimic the properties of typical chess game trees, though it is flexible enough to mimic a
wide variety of game trees. The method uses a pseudo-random number generator (PRNG) which is seeded for each
node. A node is identified by the sequence of move indices from the root to the node, plus an index for the tree,
and this sequence is used for seeding. Evaluations are from the point of view of the player to move and are in [0, 1].
There is no end point to the game; in a game between unequal players, the evaluations will tend to 1 for the strong
player, but (given exact computation) will never reach it.

For each node, the number of moves M is sampled, then ‘true’ evaluations t1, . . . , tM are generated. A ‘true’
evaluation is not the final game score given perfect play but the expected score in a game between two players.
Noise x1, . . . , xM is generated, and the ‘estimated’ evaluation vm for move m combines tm, xm, and the noise
inherited from the parent. For the estimated policy, another, independent noise vector y1, . . . , yM is generated. A
value wm for move m is found from tm, xm, ym, in a similar manner to vm and correlated to vm via xm. The wm are
then softmaxed to produce a policy. The estimated evaluations for moves are correlated with the parent’s estimated
evaluation, via the inherited noise. The estimated policy is correlated with the estimated evaluations via the xm.

3.2 Details

Number of moves. A normal distribution is used to generate M . The mean of the normal distribution is
(Mmean +MP )/2 where MP is the number of moves of the parent, and the standard deviation is Msd. M is then
the nearest integer in the range 1,2,...Mmax to the sampled normal. For the root node, MP = Mroot.

The true evaluations. u1, . . . , uM are sampled from an exponential with rate
√
M/Tscale. Then

tm =
w

w + (1− w) exp
(
−
∑m
j=1 uj

) (11)

where w is 1 - (parent’s true evaluation). This produces t1 < · · · < tM ∈ [0, 1]. Thus the player at the node will try
to choose move 1, which corresponds to the smallest tm (the worst for the opponent who will move next).

The estimated evaluations. x1, . . . , xM are sampled from a Student’s t-distribution with Edf degrees of freedom
and scaled by Ech. Then

x′m =
xm − Eparx∗√

1 + E2
par

(12)

where x∗ is the noise inherited from the parent node. The estimated evaluation for move m is then

vm =
tm

tm + (1− tm) exp(x′m)
(13)
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The minus sign in the numerator of (12) is there because x∗ is from the parent’s point of view. A positive value for
the parameter Epar corresponds to positive correlation between evaluations from the point of view of a single
player. This could happen if an evaluation function misses something about a board position and continues to miss
it after a move. A negative correlation could happen during a capture sequence in chess. The division by√

1 + E2
par keeps the variance of the noise similar throughout the tree. The shape of the noise does change a little

as one goes deeper into the tree.

The estimated policy. y1, . . . , yM are sampled from a Student’s t-distribution with Pdf degrees of freedom and
multiplied by Pch. Then y′m = ym + Pevalxm,

y′′m =
tm

tm + (1.0− tm) exp(y′m)

and finally, the estimated policy value for move m is

pm =
exp(−Psmy′′m)∑
j exp(−Psmy′′j )

(14)

Table 1 summarizes the parameters for the simulated trees.

Table 1: Simulation parameters
Parameter Description

Moves
Mroot Number of moves of parent of root
Mmean Mean number of moves
Msd Standard deviation of number of moves
Mmax Maximum number of move

True evaluations
Troot True evaluation at root
Tscale For spacing of true evaluations

Static evaluations
Edf Shape of distribution of noise
Epar Amount of noise inherited from parent
Ech Amount of per-child noise

Static policy
Pdf Shape of distribution of noise
Pch Amount of per-child noise
Peval Noise shared with static evaluations
Psm Rate for softmax

4 Results

4.1 The simulated trees

For the results presented here, game trees were generated using the parameters in Table 2. For each tree, a uniform
random choice is made from the list of values following each parameter. In Test A, these are intended to mimic the
game trees, evaluations, and policies which might come from a small neural net applied to chess. In Test B, the
values are intended to be like a higher quality evaluation in go: the number of moves is increased, and the amount
of noise (Ech, Pch) is reduced. Test C is the same as Test B, but with exactly 2 moves from each state. These are
not intended to constitute a systematic study, but only to illustrate some interesting points.

7



Figure 2 gives an indication of the accuracy of the evaluations and policies in Test A. These were generated by
sampling a large number of static evaluations for the moves from the root node, and static policies for the root
node, using the simulation scheme of section 3, and counting the number of times the ith biggest evaluation or
transitional probability corresponded the optimal move. Note that the policy is somewhat more informative than
the evaluations in terms of ordering the moves. Samples of estimated policies were also used to choose a reasonable
value for Psm, by comparing Pr(best|rank 1)/Pr(best|rank M) with the geometric mean of maxj(pj)/minj(pj). It
was found that, for the tests conducted here, Psm = 10 produced policies which were not much too sharp or much
too flat by this measure.
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Figure 2: These are based on simulations for Test A with M = 30 moves. The top histogram is based on samples of
static evaluations, one per move. The lower histogram is based on static policies. A value with rank i is the ith biggest
among the moves. See text for more details.

4.2 Algorithm parameters

For ESPRIT, the settings α = 0.5, λ = 1.0, γ = 3, σ = 0.07 were used for Tests A, B, and C. These were chosen after
experimenting with various variations in the formulas used, and parameter values, using trees similar to, or
identical to, those of Test A. Thus ESPRIT has been well-tuned for this data. No further tuning was done for Tests
B and C, however.

For PUCT, we left c1 = 196524, and experimented with different values for c0. We tested 19 values close to the
powers of 21/3 ranging from 0.25 to 16 on trees of size up to 216 = 65536, to locate a good value for c0. The
performance was not very sensitive to the value. For Test A, we chose 2.5, for Test B, we chose 6.4, and for Test C,
we chose 0.4.

4.3 Test A

Figure 3 shows the performance as the number of playouts ranges from 1 to 220 ≈ one million. For the larger tree
sizes, PUCT has mean regret around double that of ESPRIT, corresponding to needing four times the tree size to
achieve a similar result. From 210 to 218 both show a straight line with similar slope on the log-log plot, with mean
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Table 2: Game tree simulation parameter values
Parameter Test A Test B Test C

Moves
Mroot 10 30 50 200 2
Mmean 10 30 50 200 2
Msd 5.0 5.0 0.0
Mmax 100 300 2

True evaluations
Troot 0.1 0.3 0.5 0.7 0.9 Same as A Same as A
Tscale 0.1 0.2 0.3 0.4 0.1 0.2 0.3 Same as B

Static evaluations
Edf 2.0 3.0 4.0 Same as A Same as A
Epar -1.0 0.0 1.0 5.0 Same as A Same as A
Ech 0.2 0.3 0.4 0.5 0.2 0.3 Same as B

Static policy
Pdf 2.0 3.0 4.0 Same as A Same as A
Pch 0.1 0.2 0.3 0.1 0.2 Same as B
Peval 0.1 0.2 0.3 0.1 Same as B
Psm 10.0 Same as A Same as A

regret approximately proportional to (tree size)−0.33. PUCT deviates from this for largest two sizes, and ESPRIT
appears to do the same for the largest size. The percentage of correctly chosen moves increases from 21% for one
playout to 76% (ESPRIT) and 69% (PUCT) for 220 playouts.

Results on subsets of trees with particular simulation parameter values are shown in Table 3. Both methods do
worse with more moves (Mmean) though PUCT gets worse faster. Both do worse with the true evaluation
Troot = 0.5, presumably because evaluations tend to get squashed near 0 and 1, so the regret is smaller. Neither
method seems sensitive to Tscale.

Both methods unsurprisingly do worse with smaller Edf and larger Ech, both of which make the evaluations noisier.
PUCT is relatively poor when correlation between parent and child evaluations are 0 or negative (Epar ≤ 0) and
relatively good with high positive correlation between parent and child evaluations (Epar = 5).

Turning to the policy, the trends are in the expected direction for Pdf and Peval, with more dramatic changes in
PUCT than ESPRIT. Both methods are surprisingly insensitive to the amount of uncorrelated noise Pch in the
policy.

4.4 Test B

Figure 4 shows the performance of ESPRIT and PUCT on Test B, where the number of moves from a state is
around 200. ESPRIT becomes slightly worse between 64 playouts and 256 playouts. This is not understood,
though remember that ESPRIT’s parameters have not been adjusted for this test. ESPRIT substantially
outperforms PUCT on this data, with roughly half the regret, although the large scale trends are less clear than
with Test A. The percentage of correctly chosen moves increases from 8% for one playout to 50% (ESPRIT) and
41% (PUCT) for 220 playouts.

4.5 Test C

Figure 5 shows the performance of ESPRIT and PUCT on Test C, where the number of moves from a state is
always 2. PUCT has mean regret around double that of ESPRIT until 212=4096, and then becomes more than
double. PUCT deviates from this from 214=16384, and ESPRIT deviates from 218=262144. The percentage of
correctly chosen moves increases from 68% for one playout to 95.7% (ESPRIT) and 92.5% (PUCT) for 220 playouts.
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Figure 3: The performance of ESPRIT (solid line) and PUCT (dashed line) for Test A. Mean regret over 10000 trees is
plotted against tree size (number of playouts) on a log-log scale. The diamonds extend to ± 2 standard deviations. The
grey line extends from tree size 210 to 220, and is proportional to (tree size)−1/3.
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Table 3: Subsets of trees

Parameter Value Set size ESPRIT PUCT Difference
Mmean 10 3271 1.66 2.34 0.68
Mmean 30 3408 1.89 3.22 1.33
Mmean 50 3321 2 3.9 1.9
Troot 0.1 2030 1.36 2.39 1.02
Troot 0.5 2043 2.37 3.61 1.24
Troot 0.9 1966 1.29 2.81 1.52
Tscale 0.1 2521 1.76 2.78 1.02
Tscale 0.2 2549 1.89 3.23 1.34
Tscale 0.3 2474 1.93 3.49 1.56
Tscale 0.4 2456 1.83 3.15 1.32
Edf 2 3331 2.36 3.72 1.36
Edf 3 3386 1.69 2.9 1.21
Edf 4 3283 1.5 2.86 1.36
Epar -1 2498 1.57 3.2 1.63
Epar 0 2507 1.4 2.89 1.49
Epar 1 2445 2.24 3.47 1.23
Epar 5 2550 2.2 3.09 0.89
Ech 0.2 2542 1.31 2.69 1.38
Ech 0.3 2486 1.65 3.06 1.41
Ech 0.4 2495 2.07 3.15 1.09
Ech 0.5 2477 2.4 3.75 1.35
Pdf 2 3342 2.11 4.65 2.54
Pdf 3 3351 1.76 2.61 0.85
Pdf 4 3307 1.68 2.21 0.53
Peval 0.1 3347 1.63 2.08 0.45
Peval 0.2 3377 1.88 2.96 1.08
Peval 0.3 3276 2.05 4.47 2.42
Pch 0.1 3238 1.69 3.09 1.4
Pch 0.2 3438 1.89 3.22 1.33
Pch 0.3 3324 1.97 3.17 1.2

Notes: This table shows the behavior of ESPRIT and PUCT on various subsets of 10000 trees each of size
216 = 65536, corresponding to particular simulation parameter values (first two columns). The third column shows
the number of trees in the subset. The mean regrets, multiplied by 1000 for easier reading, for ESPRIT and PUCT

are in the fourth and fifth column, and the difference in the sixth column.
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Figure 4: The performance of ESPRIT (solid line) and PUCT (dashed line) for Test B. Mean regret over 4000 trees is
plotted against tree size (number of playouts) on a log-log scale. Other details as Figure 3.
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Figure 5: The performance of ESPRIT (solid line) and PUCT (dashed line) for Test C. Mean regret over 4000 trees is
plotted against tree size (number of playouts) on a log-log scale. Other details as Figure 3.
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5 Discussion

5.1 Simulations

There seems to be little work using simulated data for game tree searches. Instead algorithms are compared by
playing large numbers of particular games using particular evaluation functions. It takes a huge computational
effort to be able to draw general conclusions from these tests, and those conclusions may say little more than
‘Algorithm X is usually superior to algorithm Y’. If ESPRIT proves disappointing when used in actual games, it
will indicate that there is something unrealistic about the nature of the tree simulations used here. By examining
cases where it fails, it may be possible to make the simulated data more realistic, and develop appropriate search
algorithms for the new data. Progress in other areas of science (such as phylogenetics with which I am familiar) has
been made in this way. Simulated data is not just a convenience, it is a model of some aspect of reality, and one
can learn from its deficiencies.

5.2 Implementations

Practical implementation of a high quality game engine using ESPRIT using a single search tree will require
accurate evaluations, otherwise the memory required for the tree will become prohibitive. ESPRIT could be used
instead of PUCT in AlphaZero’s reinforcement algorithm, but the computational resources required to test this are
huge.

Another option is use a main tree and short-lived subtrees at large depths. The SIMD implementation of ESPRIT
outlined in section 2.3 opens the possibility of moving some of the search into a GPU. The main search tree would
be stored in the host device, and when it chose a node to expand, a GPU routine would perform a small search of
say 1000 playouts below this node. From the host’s point of view, it would be as if a single high quality evaluation
was obtained. Within the GPU, a group of threads would identify a batch of nodes to evaluate, and the evaluations
would be parallelized over board positions. A small fully connected neural net may be more attractive than a
convolutional one in this situation. The memory bandwidth for weights is not the problem it usually is, because
each weight is used on many board positions.

5.3 Theory

There are also possibilities for progress of a more theoretical nature, which we briefly enumerate.

1. The optimal c0 values we found for Test A and Test B were substantially bigger than those used in
AlphaZero, and varied with the number of moves. The optimal values for the data here are around

√
M/2. It

would be interesting to know why this is the case. Perhaps there is something about the simulated trees used
here which is different from game trees in chess, shogi, or go. Perhaps the reinforcement learning context of
AlphaZero has this effect on the optimal value of c0.

2. The mathematical connections between ESPRIT and the work of Grill et al. (2020) could be explored.

3. There should be a connection between the formula used for ESSs in equation (3) and the curves for mean
regret in the results. On the limited tests done so far, it appears that zm = nm

1/2 is about right for ESSs
whereas the results suggest that (mean regret) ∝ (tree size)−1/3 is about the best that can be achieved with
ESPRIT.

4. The discussion in section 2.2.2 suggests that the way the zm’s are used (formulas 4 and 7) could be improved.

5. A careful analysis of the noise distribution of particular static evaluations and static policies should improve
performance on moderately sized trees. Eventually one might automate the whole process, and tune the
search algorithm simultaneously with training a neural net.
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Software

A snapshot of the C++ code used in this paper is available from http://indriid.com/workingnotes2021.html.
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