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1 Introduction

This is aimed at the same sort of analysis as SNAPP (Bryant et al., 2012). The data consists of unlinked biallelic
markers such as SNPs. The two alleles are labelled ‘red’ and ‘green’. SNAPP uses ‘backwards’ equations for the
coalescent process. During the likelihood calculation it keeps track of quantities (nearly but not quite partial
likelihoods) for each locus and each species tree branch, and for every pair (n, r) where n is a number of lineages
and r the number which are red. Here, 1 ≤ r ≤ n ≤ m, where m is the maximum possible number of lineages for
this locus and species tree branch. Thus m varies from the number of markers assigned to a species in external
branches up to the total number at the root. The calculation is sophisticated.

The idea here is cruder, and uses ‘forward’ equations for whole population. Some smallish integer M (perhaps 100
or 1000) is fixed for the analysis. The aim is to approximate the behaviour of a population of any size using one of
size M , with suitable scaling. The likelihood calculation is straightforward, using Felsenstein’s pruning algorithm
with length M + 1 vectors and (M + 1)× (M + 1) rate matrices on the species tree. Suppose X is a species tree
branch, and yX is the data at the tips which are descendants of X. Then the M + 1 quantities represent partial
likelihoods

Pr(yX | a fraction (i/M) of the population at X is red) (0 ≤ i ≤M).

The basic intuition is that since continuous diffusion methods (which use a limit as the population size tends to
infinity) can approximate the process for quite small population sizes, the reverse should be true. A modest value
for M may serve as a reasonable approximation to any size of population (except a very small one). The
conditional probabilities along branches can be calculated using a rate matrix R.

Pr(a fraction (i/M) is red | (j/M) were red time t ago) = exp(Rt)ij

There are other ways the likelihood calculation might be implemented. One could introduce parameters
representing fractions of the populations that are red at the ends of branches and sample them during the MCMC.
There would be one at each tip, one at each rootward end of a branch, for each locus. That is a lot of parameters,
similar to the number of node heights in gene trees for each locus. There are no gene tree topologies to worry
about, and no incompatibilities between species tree and the per-locus parameters, which should make the MCMC
more efficient, and easier to design operators for. It also seems the most flexible and extendible approach. More,
similar, parameters could be added for fractions of nucleotides, and so on. The rest of this note is about integrating
things out analytically and approximately.

The time complexity of SNAPP is O(sn2) per locus for the calculations along the branches and O(sn2 log n) per
locus for the calculation to merge two branches, where s is the number of species and n the total number of
individuals. I think the time complexity for the algorithm here is O(sM) per locus for the calculation to merge two
branches, with a small constant, and so not the main problem. For the calculations along the branches, it could be
done using eigendecompostion in O(sM2) per locus, and should be BEAGLE-friendly. Alternatively, the exp(Rt)v
calculations (where v a vector of partial likelihoods) could be done using a Caratheodory-Fejer approximation, like
SNAPP. This is O(sM) per locus, with quite a large constant.
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2 Population genetics

The Wright-Fisher model from 1931 seems most commonly used, but the Moran model (Moran, 1958) seems to be
the most suitable for the current method. This is because the matrix of transition probabilities is tridiagonal, and
there are analytical expressions for the eigenvalues. (I don’t know if the latter are useful computationally, but the
tridiagonal property is good.)

In this model, processes of birth, death and mutation are intertwined. I plan to use a variant of the Moran model
introduced in Maruyama (1977), where the birth-death process and the mutation process are regarded as
independent. I’ll call this the Maruyama-Moran model. Aalto (1989) says ‘All practical results from these two
models seem to be essentially identical.’ Blythe and McKane (2007) make the connection precise.

The model here can be described as follows. Suppose the total number of alleles in the population is M and there
are j red alleles.

• A red and a green are converted to two reds at rate (M − j)j

• A red and a green are converted to two greens, also at rate (M − j)j

• greens mutate to reds at rate jα

• reds mutate to greens at rate jβ

The first two processes represent birth and death. One can imagine a population of bacteria, in which two are
chosen at random, the first to divide, and the other to die, maintaining the population at M . If the two bacteria
have the same allele, there is no change in the number of reds and greens. If they are different, the number changes
by one. Since there are (M − j)j such pairs, the rate is proportional to this. The second two processes represent
mutation.

The rate matrix (infintesimal stochastic matrix) R is (M + 1)× (M + 1) and tridiagonal. The nonzero entries are

Rj−1,j = j(M − j) + jα (0 < j ≤M) (upper)

Rj,j = −
(
2j(M − j) + jα+ (M − j)β

)
(0 ≤ j ≤M) (diagonal)

Rj+1,j = j(M − j) + (M − j)β (0 ≤ j < M) (lower)

where we adopt the conventions that rows and columns are numbered from zero, and that columns sum to zero and
column vectors of probabilities appear on the right. An example with M = 5 is below, where the diagonal entries
are omitted for clarity.

R =


∗ 4 + α 0 0 0 0

5β ∗ 6 + 2α 0 0 0
0 4 + 4β ∗ 6 + 3α 0 0
0 0 6 + 3β ∗ 4 + 4α 0
0 0 0 6 + 2β ∗ 5α
0 0 0 0 4 + β ∗


The equilibrium state is a beta-binomial distribution with parameters M,α, β. This is the distribution you get if
you sample a beta distribution with parameters α, β to get a value p ∈ [0, 1], then toss a coin which has a
probability p of landing heads for M times, and count the heads. The probability of x reds (or heads) is

Pr(x|M,α, β) =
Γ(M)

Γ(x)Γ(M + 1− x)

Γ(x− 1 + β)Γ(M − x+ α)

Γ(M − 1 + α+ β)

Γ(α+ β)

Γ(α)Γ(β)
.

As M tends to infinity, it increasingly resembles a beta distribution which has been stretched to fill the interval
[0,M ]. This equilibrium state is the eigenvector belonging to the eigenvalue 0.

Figure 1 compares the asymptotic distribution with the distribution various M . To me it suggests that a small M
is a better approximation than infinite M for large M , at least for the U-shaped distributions which mostly occur
in practice
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Figure 1: Comparing a Beta(0.1, 0.01) distribution with Betabinomial(M,0.1,0.01). They are sort-of quantile-quantile
plots. Dotted is Beta, black is M = 10, red is M = 100, green is M = 1000, blue is M = 10000, orange is M = 100000.
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3 Main calculation

3.1 Scaling for arbitrary population sizes

The approximation goes like this. [TODO check.]

Suppose the number of gene copies in the population is η. (I think it will be convenient for this to be continuous.)
First replace α and β in the Maruyama-Moran model with ηµ and ην, where µ and ν are the red → green and
green → red mutation rates, in subtitutions per site per generation. (Roughly speaking, η = 2Ne, and if θ is the
usual population parameter 4Neu, then ηµ ≈ ην ≈ θ/2. However, the Maruyama-Moran model has a different
effective population size.) This gives approximately the right shape for the equilibrium distribution. It should be
BetaBinomial(η, ηµ, ην) and the approximation looks similar to this discretized to {0, . . . ,M}. Then divide all the
rates by η, so that the rate at which equilibrium is approached, and transition times between 0 and M are
approximately correct for η. (I have probably missed at least one factor of 2 here.) In units of generations,

Rj−1,j = j(M − j)/η + jµ (0 < j ≤M) (upper)

Rj,j = −
(
2j(M − j)/η + jµ+ (M − j)ν

)
(0 ≤ j ≤M) (diagonal)

Rj+1,j = j(M − j)/η + (M − j)ν (0 ≤ j < M) (lower)

The equilibrium fractions of red and green are ν/(µ+ ν) and µ/(µ+ ν). The expected rate of mutation at
equilibrium is 2νµ/(µ+ ν). So in units of expected substitutions,

Rj−1,j = dj + j(µ+ ν)/2ν (0 < j ≤M) (upper)

Rj,j = −
(
2dj + j(µ+ ν)/ν + (M − j)(µ+ ν)/µ

)
(0 ≤ j ≤M) (diagonal)

Rj+1,j = dj + (M − j)(µ+ ν)/2µ (0 ≤ j < M) (lower)

where

dj =
j(M − j)(µ+ ν)

2νµη
.

So R changes whenever µ, ν or η changes. η varies over branches, but not loci, since µ and ν are assumed the same
for all loci. I think there is no absolute information about population sizes, only relative ones, like SNAPP. [TODO
non-polymorphic sites?]

TODO. It is not obvious that a population of fixed size M can successfully mimic one of any size, even if the
equilibriums are similar, and the overall rate is similar. I have done a few experiments in R. My first impression is
that things work well in the middle of the distribution (away from 0 and M) but it cannot match the ends well. It
is not clear how this would affect a statistical inference of a species tree. If you get the same results using M = 100
and M = 200, its probably working OK, otherwise you’ll have to try M = 400... My intuition is that if M is as
large as the number of individuals in the analysis it will be OK, since there is enough resolution to match the
available information.

3.2 Tips

At the tips, conditional probabilities for the data are found for each fraction pi = (i/M) of the population for
i ∈ {0, 1, . . . ,M}. It seems best to regard the individuals as labelled, so the observation is that there are n specific
individuals of which r specific ones are red. So

Pr(data at tip|i) = pri (1− pi)n−r .

This differs from the unlabelled case by a normalisation constant (a binomial coefficient).

For fixed species delimitations, these can be found once for the whole analysis, and the normalisation constant does
not matter. If the delimitation is estimated, the observations at the tips can be merged as labelled individuals. If a
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second tip has r′ red out of n′, we get

Pr(data for both tips|i) = pri (1− pi)n−r pr
′

i (1− pi)n
′−r′

= pr+r′

i (1− pi)n+n′−r−r′
.

This means that the likelihood for the merged tips is the same as that for two tips with a zero height for their
MRCA. (See section 3.4 below.) If the unlabelled version was used, there would be normalisation constants to
worry about, similar to Leaché et al. (2014).

3.2.1 Dominant markers

If I understand this correctly, there is an observation that r (labelled) individuals out of n are red, where red is
dominant. The formula is then

Pr(data at tip|i) = (pi (2− pi))r (1− pi)2(n−r) .

3.3 Along branches

3.3.1 Eigendecomposition

For this, the eigendecomposition
R = V −1ΛV

where V contains the eigenvectors, and the diagonal matrix Λ contains the eigenvalues can be used. The
calculation is right to left for each partial likelihood v:

R = V −1(Λ(V v))

I assume BEAGLE does this.

The eigenvalues and the left and right eigenvectors for the Moran model were expressed analytically in Karlin and
McGregor (1962). The eigenvalues for the Maruyama-Moran model are

k(k − 1 + α+ β) (0 ≤ k ≤M).

[TODO: I think this is just a matter of translating the Moran model to the Maruyama-Moran model using Blythe
and McKane (2007). In any case, the numerical evidence is strong!]

The expressions for eigenvectors for the Moran model are in terms of Hahn polynomials. [TODO: I think the
eigenvectors are the same for the Maruyama-Moran model too.] From a computational point of view, it seems
better to exploit the tridiagonal form of R to find the eigenvectors. [TODO understand Hahn polynomials.] This
allows the eigenvectors to be found in O(M2) time. A naive algorithm may have numerical issues (Fernando, 2006).
This article may solve the issue too [TODO]. Even if O(M3) is needed, the result will be used for all loci for at
least one branch.

3.3.2 Sidje and Caratheodory-Fejer methods

From SNAPP source code comments, file likelihood/MatrixExponentiator.java, for methods expmv() and
cf_expmv().

expmv(): computes an approximation of w = exp(t*A)*v for a

general matrix A using Krylov subspace projection techniques.

It does not compute the matrix exponential in isolation but instead,

it computes directly the action of the exponential operator on the

operand vector. This way of doing so allows for addressing large

sparse problems. The matrix under consideration interacts only

via matrix-vector products (matrix-free method).
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cf_expmv()+: Uses the Caratheodory-Fejer approximation for the

exponential (on the negative real line) to evaluate the exponential

of A (assumed to be negative semi-definite) times a matrix.

Currently uses 12 degree.

These are probably more suitable than eigendecomposition. They are approximations, but the method is an
approximation already, and it seems unlikely the exponentiation will be the main source of trouble.

3.4 Merging branches

When a species splits, it assumed that two populations, both of size M are formed instantaneously, with the same
fraction of red alleles. The calculation is then just element-wise multiplication. I assume BEAGLE does this.

3.5 At root

The beta-binomial distribution for the equilibrium can be used.
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