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1 Introduction

Suppose that n individuals have been sampled from an unknown number of species. If the
individuals are assigned to species by some method, it is possible to make various kinds of errors.
Here, I concentrate on the case of erroneously splitting a single species into two. Suppose that m
gene trees (topologies and node times) T1, . . . , Tm are available for the n individuals, and that
these are independent (the m genes are unlinked) and each follows the Kingman coalescence model
with the same population parameter θ. In practice the gene trees would need to be estimated, but
I assume they are known exactly.

It is impossible to rule out the possibility that there has been a very recent speciation, and it is
interesting to find out about the distribution of the most ancient time that can split the
individuals into two sets and is compatible with all the gene trees. Let S = {1, 2, . . . , n} label the
individuals. Then I would like the distribution of

max
∅⊂A⊂S

(
min

1≤j≤m
h(A, Tj)

)
(1)

where h(A, T ) is the time of the first coalescence between a member of A and a member of S \A in
tree T . This appears to be difficult, but I do have a first step, namely the distribution of h(A, T )
when |A| = 1. Since the trees are assumed independent, the distribution of min1≤j≤m h(A, Tm)
follows for this case. I think extending this to a general but fixed A is feasible. I think that the
result will be a weighted sum of exponentials, and I think a recursive definition for the weights is
straightforward (but at the moment it looks messy). However, taking the maximum over all A
looks hard.

2 Time to first coalescence for one individual

Theorem 1 Assume |A| = 1. Let T be a tree sampled from the Kingman coalescence model with n
tips and population parameter θ. Then the cumulative distribution of h(A, T ) is given by

Fn(t) =

n∑
i=2

H(n, i)(1− e−(i(i−1)/2)θt) (2)

where

H(n, i) = i(i− 1)(2i− 1)
(n− 1)!(n− 2)!

(n− i)!(n+ i− 1)!
. (3)

First I prove a lemma. I found the form of D(n, i) using the ideas in [2], especially those of Gosper
[1], and used the software Reduce (http://sourceforge.net/projects/reduce-algebra/). The H(n, i)
turn out to be ‘Gosper-summable’.

Lemma 2 Let H(n, i) be defined as in equation 26. Then
∑n
i=1H(n, i) = 1.

Proof. Let

D(n, i) = 1− (n− 1 + i2)(n− 1)!(n− 2)!

(n− i− 1)!(n+ i− 1)!
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for 0 ≤ i ≤ n− 1, and let D(n, n) = 1. I show that the D(n, i) are partial sums of the H(n, i). First

D(n, 0) = 1− (n− 1)(n− 1)!(n− 2)!

(n− 1)!(n− 1)!
= 0

and for 1 ≤ i ≤ n− 1,

D(n, i)−D(n, i− 1)

(n− 1)!(n− 2)!
=

(
(n− 1 + (i− 1)2)

(n− i)!(n+ i− 2)!
− (n− 1 + i2)

(n− i− 1)!(n+ i− 1)!

)
=

(n− 1 + (i− 1)2)(n+ i− 1)− (n− 1 + i2)(n− i)
(n− i)!(n+ i− 1)!

=
(i2 − 2i+ n)(i+ n− 1) + (i2 + n− 1)(i− n)

(n− i)!(n+ i− 1)!

=
2i3 − 3i2 + i

(n− i)!(n+ i− 1)!

=
i(i− 1)(2i− 1)

(n− i)!(n+ i− 1)!

so D(n, i)−D(n, i− 1) = H(n, i) and

D(n, n)−D(n, n− 1) =
(n− 1 + (n− 1)2)(n− 1)!(n− 2)!

0!(2n− 2)!
= H(n, n).

Thus
n∑
i=1

H(n, i) = D(n, n) = 1. (4)

�

Proof of theorem. Define B(i) = i(i− 1)/2. The time for the next coalescence among i gene
copies is given by the density gi(t) = B(i)θe−B(i)θt for i ≥ 2. Let Xi be a random variable with
this distribution. Let Yn be a random variable with the distribution we are looking for, that is, the
first time A merges with some other lineage. Denote the density of Yn by fn(t). Clearly f2 = g2.
For n ≥ 3, the probability that A merges at the first coalescence is (n− 1)/B(n) = 2/n. If it is not
in the first coalescence, there will be n− 1 other gene copies left and the time for A to coalesce is
Xn + Yn−1. Thus

fn = (2/n)gn + ((n− 2)/n)gn ◦ fn−1 (5)

where ◦ is convolution. A straightforward calculation shows that

gi ◦ gj =
B(j)gi −B(i)gj
B(j)−B(i)

(6)

so by induction, fn is a linear combination of the gi (2 ≤ i ≤ n). Write

fn =

n∑
i=2

C(n, i)gi

where the C(n, i) are constants. We have C(2, 2) = 1. For n ≥ 3,

fn =
2

n
gn +

n− 2

n
gn ◦

n−1∑
i=2

C(n− 1, i)gi

=
2

n
gn +

n− 2

n

n−1∑
i=2

C(n− 1, i)gn ◦ gi

=
2

n
gn +

n− 2

n

n−1∑
i=2

C(n− 1, i)
B(n)gi −B(i)gn
B(n)−B(i)

=
2

n
gn +

n− 2

n

n−1∑
i=2

B(n)C(n− 1, i)gi
B(n)−B(i)

− n− 2

n

n−1∑
i=2

B(i)C(n− 1, i)gn
B(n)−B(i)

=

(
2

n
− n− 2

n

n−1∑
i=2

B(i)C(n− 1, i)

B(n)−B(i)

)
gn +

n− 2

n

n−1∑
i=2

B(n)C(n− 1, i)

B(n)−B(i)
gi.
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So

C(n, i) =
n− 2

n

B(n)

B(n)−B(i)
C(n− 1, i) (7)

for i < n and

C(n, n) =
2

n
− n− 2

n

n−1∑
i=2

B(i)

B(n)−B(i)
C(n− 1, i). (8)

Note that since the C(n, i) are the mixture weights of a normalised density, we must have

n∑
i=1

C(n, i) = 1. (9)

We use induction on n to show that C(n, i) = H(n, i), starting with H(2, 2) = 1. Suppose that
n ≥ 3 and that C(n− 1, i) = H(n− 1, i) for 1 ≤ i ≤ n− 1.

H(n, i)

H(n− 1, i)
=

(n− 1)!(n− 2)!

(n− i)!(n+ i− 1)!

(n− 1− i)!(n+ i− 2)!

(n− 2)!(n− 3)!

=
(n− 1)(n− 2)

(n− i)(n+ i− 1)

=
(n− 1)(n− 2)

n(n− 1)− i(i− 1)

=
n− 2

n

n(n− 1)

n(n− 1)− i(i− 1)

=
n− 2

n

B(n)

B(n)−B(i)
.

which shows that the H(n, i) satisfy equation (7) for i < n, and so C(n, i) = H(n, i) for i < n.
From equations (9) and Lemma 2 we must also have C(n, n) = H(n, n). �

A few observations.

• It is not at all obvious from equation (8) that C(n, n) = H(n, n) (or even that C(n, n) is
positive). That’s why my proof requires the lemma. I don’t have an intuitive understanding
of equation (8).

• A calculation shows that

fn(0) =

n∑
i=2

C(n, i)B(i) = n− 1

• C(n, n) = n
(
2(n−1)
n−1

)−1
which is the reciprocal of the (n− 1)st Catalan number.

• i(i− 1)(2i− 1)/6 is the sum of the first i squares.

3 Time to first coalescence for more individuals

Let fr,n be the density of the first coalescence of A and S \A when |A| = r. Then

fr,n =
2r(n− r)gn + (n− r)(n− r − 1)fr,n−1 ◦ gn + r(r − 1)fr−1,n−1 ◦ gn

n(n− 1)
(10)

so we can write

fr,n =

n∑
i=2

Cr(n, i)gi (11)

and using (6) it follows that for i < n,

Cr(n, i) =
(n− r)(n− r − 1)Cr(n− 1, i) + r(r − 1)Cr−1(n− 1, i)

(n− i)(n+ i− 1)
(12)
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Define

Er(n, i) =
(n− i)!(n+ i− 1)!

(n− r)!(n− r − 1)!
Cr(n, i) (13)

Then can write the recursion as

Er(n, i) = Er(n− 1, i) + r(r − 1)Er−1(n− 1, i) (14)

Applying this j times,

Er(n, i) = Er(n− j, i) + r(r − 1)

j∑
k=1

Er−1(n− k, i) (15)

3.1 Two individuals

Theorem 3 Assume |A| = 2. Let T be a tree sampled from the Kingman coalescence model with n
tips and population parameter θ. Then the cumulative distribution of h(A, T ) is given by

F2,n(t) =

n∑
i=2

H2(n, i)(1− e−(i(i−1)/2)θt) (16)

where

H2(n, i) =
(n− 2)!(n− 3)!i(2i− 1)(2i− 2)

(n− i)!(n+ i− 1)!

(
(2i− 3)!

(i− 2)!(i− 3)!

i2 + i− 6

6

(i− 1)!2

(2i− 2)!
+ (n− i)

)
(17)

Proof.

C2(n, i) =
(n− 2)(n− 3)C2(n− 1, i) + 2C1(n− 1, i)

(n− i)(n+ i− 1)
(18)

=
(n− 2)(n− 3)C2(n− 1, i) + 2i(i− 1)(2i− 1) (n−2)!(n−3)!

(n−i−1)!(n+i−2)!

(n− i)(n+ i− 1)
(19)

(20)

So

(n− i)!(n+ i− 1)!

(n− 2)!(n− 3)!
C2(n, i) =

(n− i− 1)!(n+ i− 2)!

(n− 3)!(n− 4)!
C2(n− 1, i) + 2i(i− 1)(2i− 1) (21)

The RHS and first term on the LHS are the same except that n on the right becomes n− 1 on the
left. Applying this j times,

(n− i)!(n+ i− 1)!

(n− 2)!(n− 3)!
C2(n, i) =

(n− i− j)!(n+ i− j − 1)!

(n− j − 2)!(n− j − 3)!
C2(n− j, i) + 2ji(i− 1)(2i− 1) (22)

Setting j = n− i

(n− i)!(n+ i− 1)!

(n− 2)!(n− 3)!
C2(n, i) =

0!(2i− 1)!

(i− 2)!(i− 3)!
C2(i, i) + 2(n− i)i(i− 1)(2i− 1) (23)

To be continued...

In reduce,
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summand:=k*(k-1)*(2*k-1)*factorial(n-2)*factorial(n-3)*binomial(2*n-1,n-k)*

((k+3)*(k-2)*(k-2)*(k-1)+12*(n-k))/(6*factorial(2*n-1));

summand;(
2n− 1
−k + n

)
(n− 3)! (n− 2)!k

(
2k6 − 7k5 − 7k4 + 35k3 + 24k2n− 55k2 − 36kn+ 44k + 12n− 12

)
6 (2n− 1)!

(24)

gosper(summand,k,n);(
k6 + 6n3 − 24n2 + 30n− 12 + (3n− 14) k4 +

(
6n2 − 21n+ 25

)
k2
)

(k − n)

(
2n− 1
− (k − n)

)
(n− 3)! (n− 2)!

6 (2n− 1)!
(25)

Note that

H2(n, n) =
(n− 2)!(n− 3)!n(n− 1)(2n− 1)

0!(2n− 1)!

(n+ 3)(n− 2)2(n− 1)

6
(26)

=
(n− 1)!(n− 1)!n

(2n− 2)!

(n+ 3)(n− 2)

6
(27)

= n

(
2n− 2

n− 1

)−1
(n+ 3)(n− 2)

6
(28)

3.2 Three individuals

It goes on. No proof of the following but the numerical evidence is strong.

Theorem 4 Assume |A| = 3. Let T be a tree sampled from the Kingman coalescence model with n
tips and population parameter θ. Then the cumulative distribution of h(A, T ) is given by

F3,n(t) =

n∑
i=2

H3(n, i)(1− e−(i(i−1)/2)θt) (29)

where

H3(n, n) = n

(
2n− 2

n− 1

)−1
(n− 3)((n− 3)3 + 16(n− 3)2 + 65(n− 3) + 38)

120
(30)

I think other H(n, i) can be found from this. I have written the polynomial in (n− 3) beacuse it
seems to follow a bit of a pattern. H2(n, n) multiplied by the (n− 1)st Catalan number is

(n− 2)((n− 2) + 5)

3!

H3(n, n) multiplied by the (n− 1)st Catalan number is

(n− 3)((n− 3)3 + 16(n− 3)2 + 65(n− 3) + 38)

5!

and note the coefficients are all positive and sum to 1.
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