Manual for using AlloppNET for diploids and allotetraploids

Graham Jones

2013-07-30

1 The model

The model, AlloppNET, is aimed at phylogenetic analysis of diploids and genomic allotetraploids.
It is derived from the model in [2] but the new version is able to deal with arbitrary numbers of
diploid species, allotetraploid species and hybridizations. It allows you to infer a multi-labeled
species tree in an analogous way to *BEAST [1].

The model is available in the development version of (1.8.0pre) of BEAST (not BEAST 2). Until it
is incorporated into the release version of BEAST (v1.8 probably) you need to download and
compile the development version of BEAST. (Section 3.)

2 Preparing data and making BEAST XML

There is no support in BEAUT] for AlloppNET. I have written some R code to help. You can get
it from http://www.indriid.com (see working notes 2013). This R code will generate a ‘vanilla’
BEAST XML file for the model from .nex files and a text file I call a ‘taxa table’.

The examples here use data from the genus Silene (Caryophyllaceae). The RPD2 data has been
published in [3]. The RPA2 data is about to be published in [4]. The RPB2 data was supplied by
Anna Petri and has not yet been published.

The file Silene2-makebeastxml.r takes as input the four nex files RPA2.nex, RPB2.nex,
RPD2a.nex, RPD2b.nex, and the taxa table Silene2TaxaTable.txt and produces a BEAST XML
file

2.1 Taxa table

ID species individual genome
Suw_u6364_A Suw u6364 A
Suw_u6432_A Suw u6432 A
Suw_u7587_A Suw u7587 A
Suw_u7614_A Suw ur614 A
Suw_u7681_A Suw u7681 A
Suw_u7023_A Suw u7023 A
Suw_ul4348_A Suw ul4348 A
Suw_ul4594_A Suw ul4594 A
Suw_w12596_A Suw w12596 A
Salsv_a6362_A Salsv a6362 A
Salsv_a7049_A Salsv a7049 A
Salsv_a704902134_A Salsv a704902134 A
Salsv_al1253402121_A Salsv a1253402121 A
Salsv_al253402142_A Salsv 21253402142 A
Salsv_a7441_A Salsv a7441 A
Salsv_a74412_A Salsv ar4412 A
Salsv_a74413_A Salsv a74413 A
Salsv_17485_A Salsv 17485 A
Salsv_112405_A Salsv 112405 A
Salsv_s12338_A Salsv s12338 A
Salsv_s12339_A Salsv s12339 A
Salsv_s12396_A Salsv s12396 A
Salsv_v7725_A Salsv v7725 A
Salsv_v12211_A Salsv v12211 A
Salsv_v12392_A Salsv v12392 A
Si_2492_A Si 2492 A
Si_2492_B Si 2492 B
Si_7363_A Si 7363 A
Si_7363_B Si 7363 B
Si_7608_A Si 7608 A
Si_7608_B Si 7608 B
Si_7701_A Si 7701 A
Si_7701_B Si 7701 B
Ss_6678_A Ss 6678 A
Ss_6678_B Ss 6678 B
Ss_6820_A Ss 6820 A
Ss_6820_B Ss 6820 B
St_6832_A St 6832 A
St_6832_B St 6832 B
St_6834_A St 6834 A
St_6834_B St 6834 B

Items are separated by spaces and must not contain spaces.
There are five putative species here: diploids Suw and Salsv, and allotetraploids Si, Ss, St.

The ID column, together with a locus, gives a unique label for a single sequence. It will become a
taxon id in BEAST XML. The labels don’t have to have the above format, but they must be
unique and different from any of the labels given to species or individuals.

The species column defines which species the ID belongs to, and the individual column defines the

individual. The labels for individuals must be unique within species.

All ID’s are given a genome label, which must be A or B and should be A for diploids. These A’s
and B’s identify homeologous sequences within individuals. The labels themselves don’t have
biological meaning.

2.2 NEX files

Each nex file contains sequences for some or all of the ID’s. Labels must match exactly. Example
nexus file for one gene, with sequences truncated:

#NEXUS
[Data written by write.nexus.data.R, Tue Oct 09 15:39:02 2012]
BEGIN TAXA;
DIMENSIONS NTAX=28;
TAXLABELS
Si_7701_B Si_7608_B Suw_u6364_A Suw_u6432_A Suw_u7681_A
Suw_u7023_A Si_7701_A Si_7608_A Salsv_a74412_A Salsv_17485_A
Salsv_a74413_A Salsv_s12339_A Ss_6820_A Salsv_al253402121_A Salsv_v7725_A
St_6834_A Salsv_s12338_A Salsv_a7049_A Salsv_al1253402142_A St_6832_A
St_6832_B Salsv_112405_A Salsv_v12211_A Ss_6820_B St_6834_B
Ss_6678_A Suw_wl2596_A Suw_ul4348_A

END;

BEGIN CHARACTERS;
DIMENSIONS NCHAR=829;
FORMAT MISSING=7 GAP=- DATATYPE=DNA INTERLEAVE=NO;

MATRIX
Si_7701_B cctgatcttattataaacccacatgcattt
Si_7608_B cctgatcttattataaacccacatgcattt
Suw_u6364_A === 0 @0l—ommmm—mmo———o———o————————————
Suw_u6432_A cctgatcttattataaacccacatgcattt
Suw_u7681_A cctgatcttattataaacccacatgcattt
Suw_u7023_A cctgatcttattataaacccacatgcattt
Si_7701_A cctgatcttattataaacccacatgcattt
Si_7608_A cctgatcttattataaacccacatgcattt
Salsv_a74412_A cctgatcttattataaacccgcatgcattt
Salsv_17485_A cctgatcttattataaacccgcatgcattt
Salsv_a74413_A cctgatcttattataaacccgcatgcattt
Salsv_s12339_A = -——---mmm———mm——————— gcatgcattt
Ss_6820_A 00 0—ommmmmmm—mmo—mmo———————————o

Salsv_al1253402121_A - - -
Salsv_v7725_A = —o-mmmmomoomo—oo—o——————————

St_6834_A cctgatcttattataaacccacatgcattt
Salsv_s12338_A cctgatcttattataaacccgcatgcattt
Salsv_a7049_A = —o-mmm—mmoo—oo——o——o————————o
Salsv_a1253402142_A cctgatcttattataaacccgecatgceattt
St_6832_A cctgatcttattataaacccgcatgcattt
St_6832.B =000 mmmmmm—mmo——oo—————————— oo
Salsv_112405_A = —---mmmmmommmmmo—————o— o
Salsv_v12211_A cctgatcttattataaacccgcatgcattt
Ss_6820.B === 0—mommmmmmmo——oo———o———————————o
St_6834_B =000 mmmmmmmmm— oo
Ss_6678_A cctgatcttattataaacccgcatgcattt

Suw_wl12696_A 0 ——-mmmm—mmo—oomo—o——————————
Suw_ul4348_A 0 —ommmm—m—————————————————————

3

END;

2.3 The R code

The following R code was used to make the BEAST XML file.

The first section is standard. It loads other R code. You will need to change the first line after you
have downloaded the code to point to where you have put the code.

setwd("C:/Users/Graham/AAA/Programming/Goteborg/AlloppRcode-nhybs")
library(ape)

source("AlloppDT_bbeastxml_toplevel.r")
source("AlloppDT_6beastxml_bits.r")

The second section is particular to the data set and analysis to be done.

directory for input and output
data.dpath <- "C:/Users/Graham/AAA/Programming/GoteborgReal/Silene2/test/"

Input data
fpath.taxatable <- "Silene2TaxaTable.txt"
alignmentnames <- c("RPA2", "RPB2", "RPD2a", "RPD2b")

BEAST information
beastXMLfilename <- "Silene2.XML"

beast.chain.length <- "1000000"
beast.screen.logevery <- "10000"
beast.params.logevery <- "1000"
beast.gtrees.logevery <- "1000"
beast.multree.logevery <- "1000"
beast.dbugtune.logevery <- "10000"

BEAST output file names
sampledgtrees.fnamebase <- "sampledgtrees"
sampledmultrees.fname <- "sampledmultrees.txt"
sampledparams.fname <- "sampledparams.txt"
DBUGTUNE. fname <- "DBUGTUNE.txt"

The third section is standard, and and makes the BEAST XML file.

beastAlloppDTxmlinfo <- list(
data.dpath=data.dpath,
fpath.taxatable=fpath.taxatable,
alignmentnames=alignmentnames,
beastXMLfilename=beastXMLfilename,
beast.chain.length=beast.chain.length,
beast.screen.logevery=beast.screen.logevery,
beast.params.logevery=beast.params.logevery,
beast.gtrees.logevery=beast.gtrees.logevery,
beast.multree.logevery=beast.multree.logevery,
beast.dbugtune.logevery=beast.dbugtune.logevery,
sampledgtrees.fpathbase=paste(data.dpath, sampledgtrees.fnamebase, sep=""),
sampledmultrees.fpath=paste(data.dpath, sampledmultrees.fname, sep=""),
sampledparams.fpath=paste(data.dpath, sampledparams.fname, sep=""),
DBUGTUNE. fpath=paste(data.dpath, DBUGTUNE.fname, sep=""))

make.beastxml.AlloppDT.forRealData(beastAlloppDTxmlinfo)

Some more details on the second section. The names like ‘RPA2’ in character vector
alignmentnames refer to files like ‘RPA2.nex’. The name ‘Silene2. XML’ assigned to
beastXMLfilename will result an XML file called ‘Silene2. XML’ which you can run in BEAST.
The name ‘sampledgtrees’ to sampledgtrees.fnamebase will result in file names like
‘sampledgtreesl.txt’ and ‘sampledgtrees2.txt’, for genes 1 and 2 in Silene2. XML. Likewise for the
other output file names, except there is only one file, not one per gene, for each analysis.

Here is part of the XML generated, showing the list of taxa, and (truncated) sequences. The last
sequence shown is not present in the relevant nex file, so is filled with ?77.

<!-- Taxa. Each taxon is a sequence (A or B) from an individual -->
<!-- in a species. -->

<taxa id="taxa">

<taxon id="Suw_u6364_A" />

<taxon id="Suw_u6432_A" />

<taxon id="Suw_u7587_A" />

<!-- Alignment for gene 1 from nex file RPA2 -—>
<alignment id="alignmentl" dataType="nucleotide">
<sequence>

<taxon idref="Suw_u6364_A" />

</sequence>
<sequence>
<taxon idref="Suw_u6432_A" />
CCTGATCTTATTATAAACCCACATGCATTTCC
</sequence>
<sequence>

<taxon idref="Suw_u7587_A" />
PPPPPPPPR P PP PP PP PPPPPPRPPPP?

</sequence>

The following section of XML shows the assignment of sequences to individuals and individuals to
species, and connects the gene trees to the multiply-labelled species tree.

<!-- Species network model. -->
<!-- Assignments of sequences to individuals and individuals to species. -->
<alloppSpecies id="alloppSpecies" minGeneNodeHeight="0.2" >
<apsp id="Suw" ploidylevel="2" >
<individual id="Suwu6364" >
<taxon idref="Suw_u6364_A" />
</individual>

<individual id="Suwu6432" >
<taxon idref="Suw_u6432_A" />
</individual>

<individual id="Suwu7587" >
<taxon idref="Suw_u7587_A" />
</individual>

<individual id="Suwu7614" >
<taxon idref="Suw_u7614_A" />
</individual>

<individual id="Suwu7681" >
<taxon idref="Suw_u7681_A" />
</individual>

<individual id="Suwu7023" >
<taxon idref="Suw_u7023_A" />
</individual>

<individual id="Suwul4348" >
<taxon idref="Suw_ul4348_A" />
</individual>

<individual id="Suwul4594" >
<taxon idref="Suw_ul4594_A" />
</individual>

<individual id="Suww12596" >
<taxon idref="Suw_w12596_A" />
</individual>

</apsp>

<apsp id="Salsv" ploidylevel="2" >

</apsp>
<apsp id="Si" ploidylevel="4" >

</apsp>
<apsp id="Ss" ploidylevel="4" >

</apsp>

<apsp id="St" ploidylevel="4" >
<individual id="St6832" >

<taxon idref="St_6832_A" />
<taxon idref="St_6832_B" />
</individual>

<individual id="St6834" >

<taxon idref="St_6834_A" />
<taxon idref="St_6834_B" />
</individual>

</apsp>

<geneTrees id="geneTrees" >
<treeModel idref="1.treeModel" />
<treeModel idref="2.treeModel" />
<treeModel idref="3.treeModel" />
<treeModel idref="4.treeModel" /> 8
</geneTrees>

</alloppSpecies>

2.4 Alleles and homeologs

The XML format was designed with a particular ‘shape’ of data in mind. It was assumed that
there would be one sequence from each diploid individual, and two homeologous sequences from
each tetraploid individual, possibly with some missing data. However you may have more alleles
than this for some individuals, or it may be unclear if two sequences from a single individual are
different because they are different homeologs, or different due to heterozygosity. You should not
take the meaning of the word ‘individual’ in the XML too literally: the purpose of the XML
element is to identify pairs of homeologs in tetraploid specimens. You may prefer to think of
‘individual’ as meaning ‘homeolog-pair’. As long as the ‘individual’s in the XML identify such
pairs, it does not matter if they do not correspond to the normal meaning of an individual.

Suppose that some sequences have been obtained for a single gene from a single tetraploid plant,
and that no complications such as gene duplication are present. If there were four sequences, you
would know that two of the sequences come from one parental diploid species, and two from
another. To explain the options, suppose one parental diploid species is labelled 1, the other 2.

If you have one such sequence (call it ‘a’), you can make an individual with missing data (‘?”) for
the other homeolog. The program will consider assigning ‘a’ to 1 and ‘?’ to 2, or vice-versa.

If you have two such sequences (‘a’, ‘b’), you can make one individual if you are prepared to
assume that they are homeologs. The program will consider assigning ‘a’ to 1 and ‘b’ to 2, or
vice-versa. Otherwise, you can make two individuals with two sequences of missing data which will
allow ‘a’, ‘b’ to be assigned to 1 or 2 independently.

For three or four such sequences, the current implementation does not do as well as it might.
Suppose there are four such sequences (‘a’, ‘b’, ‘c’, ‘d’). We could write the six possible
assignments as 1122, 1212, 1221, 2112, 2121, 2211. Ideally the implementation would use MCMC
moves to explore these six possibilities, but that has not yet been implemented. Instead, it allows
two options. You may be prepared to divide the four sequences into two homeolog-pairs, say ‘a’
plus ‘b’ and ‘¢’ plus ‘d’. Then the program will consider 1212, 1221, 2112, 2121 but not 1122 or
2211. If you cannot divide the four sequences into two homeolog-pairs, you can make 4 individuals
each with missing data. Then the program will consider all six possibilities, but will also consider
ten impossible assignments (1111,1112,...2222). This amounts to throwing away some information
(the fact that all four sequences came from one plant).

If you have lots of genes, it is likely that you will have some specimens where you have one
sequence for one gene, two sequences which you are sure are homeologs in the case of another gene,
two sequences which you are not sure are homeologs for a third gene, and so on. You may need to
invent lots of individuals to deal with all the possibilities! For example ‘specimenl’ might become
three individuals: ‘specimenlknownpair’, ‘specimenlunknownl’; ‘specimenlunknown?2’.

2.5 Interpreting the results
The MUL-trees can be summarized in the usual way with TreeAnnotator. There are some extra
statistics.

There is a statistic “NumHybs” in the “sampledparams” file. This records the number of
hybridizations.

The sampled MUL-trees have a label at each node which indicates whether the node is a root of a
tetraploid subtree, and if so, which one. The labels are “X” which means “not a root of a
tetraploid subtree”, and “T0”, “T1”, “T2”, ... for root of different tetraploid subtrees. The labels
“T07”, “T1”, “T2”, ... are arbitrary. These may be difficult to interpret - I am not sure how
TreeAnnotator summarizes them. It is possible (eg with an R script) to extract the sampled
MUL-trees which correspond to a particular partition of the tetraploid species into groups. For

[[{))

example, with tetraploid species “x”, “y”, “z”, you could make a sublist of MUL-trees in which “x”
and “z” belong to one tetraploid tree and “y” to another.

3 Downloading and compiling the development version of
BEAST

Until it is incorporated into the release version of BEAST you need to download and compile the
development version of BEAST. This section may help you, but if it doesn’t please ask someone
else, not me!

You will need:
e Java and a Java development kit (JDK) installed.
e Subversion installed. http://subversion.apache.org/

e Ant installed. http://ant.apache.org/

3.1 Linux instructions

3.1.1 Check out the code

Type
svn checkout http://beast-mcmc.googlecode.com/svn/trunk/ beastl16

beast16 names a directory; you can use another name. You should see a long listing of files ending
something like

A beast16/examples/incorrect/test0TFPCLikelihood.xml
U beastl6
Checked out revision 4366.

3.1.2 Build BEAST

cd to beast16 and type ant. You should see something like this:

10

[gjones@pc158250 beast16]$ ant
Buildfile: build.xml

clean:

init:
[echo] BEAST: /home/gjones/beast16/build.xml

compile-all:
[mkdir] Created dir: /home/gjones/beast16/build
[javac] Compiling 1836 source files to /home/gjones/beast16/build
[javac] Note: Some input files use or override a deprecated API.
[javac] Note: Recompile with -Xlint:deprecation for details.
[javac] Note: Some input files use unchecked or unsafe operations.
[javac] Note: Recompile with -Xlint:unchecked for details.

[echo] Successfully complied.

dist-all:
[mkdir] Created dir: /home/gjones/beast16/build/dist
[jar] Building jar: /home/gjones/beast16/build/dist/beast.jar
[jar] Building jar: /home/gjones/beastl16/build/dist/beauti.jar

build:
BUILD SUCCESSFUL

Total time: 37 seconds
[gjones@pc158250 beast16]$

3.1.3 Copy some ‘properties’ files from source directory to build directory

Type

cp beast16/src/dr/app/beast/*.properties beast16/build/dr/app/beast/

3.2 Windows instructions

You have to do the same steps: download the code, compile it, and run it via a java command. I
use TortoiseSVN which is a GUI for Subversion and Eclipse which is an IDE for Java. This is

overkill if you just want to run a development version of BEAST, but I have not tried any other
way.

3.3 Test BEAST is working

In order to run BEAST you need to execute a java command and supply a ‘classpath’ which is in
this case a list of three places (. meaning ‘here’, /home/gjones/beast16/build/, and
/home/gjones/beast16/1ib/*) to tell java where to look for code. Then there is the java class

11

BeastMain to run and the XML file YuleSingleLocus.xml which is input to BEAST. Under
Linux, all as one line:

java -classpath ’.:/home/gjones/beast16/build/:/home/gjones/beast16/1ib/*’
dr.app.beast.BeastMain beast16/examples/release/starBEAST/YuleSingleLocus.xml

Under Windows, the classpath is separated by ; not : and the code is a different place (bin not
build) and file paths use \ not / and the single quotes don’t seem to be needed. It might look like
this:

java -classpath .;C:\workspace\beast16\bin;C:\workspace\beast16\1lib/*
dr.app.beast.BeastMain beasti16\examples\release\starBEAST\YuleSingleLocus.xml

You should see a normal BEAST run.

References

[1] J Heled and A Drummond. Bayesian inference of species trees from multilocus data. Mol. Biol.
Evol., 27:570-580, 2010.

[2] G Jones, S Sagitov, and B Oxelman. Statistical inference of allopolyploid species networks in
the presence of incomplete lineage sorting. Syst. Biol., 2013.

[3] A Petri and B Oxelman. Phylogenetic relationships within Silene (Caryophyllaceae) section
Physolychnis. Tazon, 60: 953-968, 2011.

[4] A Petri, B Pfeil and B Oxelman. Introgressive hybridization between anciently diverged
lineages of Silene (Caryophyllaceae). Submitted to PLOS one, under revision.

12

