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Abstract

Allopolyploid species are formed by genome dou-
bling after hybridization between otherwise inter-
sterile parental species. Allopolyploidy is the second
most common speciation mechanism in land plants,
after ordinary speciation. Here we describe and
evaluate a Bayesian approach to the phylogenetic
analysis of species relationships when both ordinary
speciation and allopolyploidy are present. The ap-
proach takes incomplete lineage sorting into account
using the multi-species coalescent model, and ex-
tends this to deal with the extra complications due
to allopolyploidy. The number of hybridizations is
not assumed, which means that the number of pa-
rameters varies and a reversible-jump MCMC algo-
rithm is needed to sample from the posterior. The
main restriction is that only diploids and allote-
traploids are considered. The model is implemented
in the BEAST framework. Simulations show that
the topology of the network can be reliably inferred
along with estimates of other parameters. The mod-
els are demonstrated on previously analyzed data
the genus Silene (Caryophyllaceae).

1 Introduction

Speciation may involve hybridization or genome
doubling. Ordinary speciation, which involves nei-
ther, is the most common and the most studied.
When it occurs repeatedly it forms a branching pro-
cess, and the result is a binary tree which grows
as branches at the tips split into two. Speciation
which involves only genome doubling is called au-
topolyploidy, and it can still be seen as part of a
branching process. Speciation which involves hy-
bridization, but no change in genome size is called

homoploid hybridization or recombinational specia-
tion; the genome of the new species is a ‘mixture’ or
‘mosaic’ of the genomes of the two parental species.
Finally, in allopolyploidy, individuals belonging to
two different species produce one or more hybrid
individuals which then undergo genome doubling
and form a new species. The hybrid individuals
would (at least in most cases) be infertile without
this genome doubling, because the chromosomes of
the two parental species are too different to recom-
bine during meiosis. In this case the genome of the
new species is the ‘sum’ of the genomes of the two
parental species.
In general, homoploid hybridization, autopoly-

ploidy, and allopolyploidy are rare in comparison
to ordinary speciation. Homoploid hybridization is
hard to detect but has been found in a few cases.
On the other hand polyploids (species with doubled
or other multiples of genomes compared to close rel-
atives) are common in plants, and also occur in an-
imals and fungi. Around half of flowers and 95%
of ferns are polyploids. Polyploids are relatively
easy to detect, but it is harder to determine whether
their origin was autopolyploidy or allopolyploidy, or
to determine how much ordinary speciation has oc-
curred since their origin. Autopolyploidy is much
more common than allopolyploidy. Within plants at
least, allopolyploidy is the most important mecha-
nism for generating new species apart from ordinary
speciation.
The purpose of this paper is to describe and evalu-

ate a Bayesian approach to the phylogenetic analysis
of species relationships when both ordinary specia-
tion and allopolyploidy are present. It builds on
the work in [10] which was restricted to a single hy-
bridization. The main restriction here is that only
diploids and allotetraploids are considered. Thus
we assume that the species being analyzed have un-
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dergone at most one round of allopolyploidization
since the root of the network. We also assume that
within the allotetraploids, there is no recombination
between sequences from different parental species.
This means that all the sequences can be seen as
the result of the evolution of diploid genomes, but
after hybridization, node times and population sizes
are shared.
The evolutionary history can be represented as

a network or as a multi-labeled tree (MUL-tree),
which is a binary tree in which more than one tip
may be labeled by the same species. Both these rep-
resentations omit information about extinct species;
they are reconstructions from extant taxa. An ex-
ample is shown in Figure 1. This shows a scenario
which results in two extant diploid species a and b,
and three extant allotetraploid species x, y, and z.
Reading these diagrams from left to right, there are
three ordinary speciations resulting in four diploid
species before the first hybridization. Then two
of these hybridize to form allotetraploid species x
which continues to present. This is followed by two
more ordinary speciations of diploid species, and a
second hybridization to produce an allotetraploid
species, which then undergoes ordinary speciation
to produce y and z. The diploid species which
contribute to the hybridizations become extinct be-
fore present time, leaving a and b. Note that it is
straightforward to convert the network representa-
tion into a unique multi-labeled tree representation.
There are algorithms for the reverse operation [7]
but the network obtained is not in general unique.
There are several problems to deal with in the

phylogenetic analysis. In common with the infer-
ence of species trees in which there is only ordinary
speciation, the issue of incomplete lineage sorting
cannot be ignored. Thus we need to simultane-
ously estimate the gene trees and the species net-
work into which they fit. We use a generalization
of the multispecies coalescent model to deal with
this. Secondly, when the DNA from allotetraploid
organisms is sequenced, it is not possible a priori to
assign sequences to their parental diploid species.
Thus there is an ambiguity in the labeling of the
sequences which is not normally present. These two
issues were dealt with in [10], but there a single hy-
bridization was assumed. Here we infer the number
of hybridizations. This means that inference must
explore a space of species networks in which the
number of parameters (node times and population
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Figure 1: Top: a species network for two diploid
species a and b, and three allotetraploid species x, y,
and z. The widths of the gray ‘tubes’ indicate popu-
lation sizes. The network contains a gene tree, with
red and green branches indicating different parental
species. The blue line indicates one hybridization, the
orange lines another. Bottom: the same scenario rep-
resented as a multi-labeled tree.

size parameters) varies. We use a reversible-jump
MCMC process to explore this space.

There has been a considerable amount of work
on hybridization, often focussed on homoploid hy-
bridization [1–3, 12]. However these do not take
advantage of the particular patterns that occur in
allopolyploidy. Much previous work on allopoly-
ploidy [7,8,13–15] has used ad hoc instead of a sta-
tistical approaches. There is more discussion of re-
lated work in [10].

2 Model and priors

There is a large amount of notation which we collect
here. Let the number of diploid species be d and the
number of allotetraploid species be m. The network
is denoted by W and the multi-labeled species tree
derived from it is MW . For a given network state,
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let h be the number of hybridizations. Suppose the
ith allotetraploid subtree has mi tips (1 ≤ i ≤ h).

Then m =
∑h

i=1 mi. The population size parame-
ters are denoted by the vector θ. The parameter η is
a scaling factor for the population sizes, appearing
in a hyperprior for θ. The number of gene trees is
denoted by G. The topology and set of node times
for the ith gene tree is denoted by τi (1 ≤ i ≤ G).
All the other parameters belonging to the ith gene
tree are denoted by αi; these are parameters for site
rate heterogeneity, substitution model, branch rate
model, and root model. Thus (τi, αi) gives all the
parameters for the ith gene tree. The permutations
of sequences within polyploid individuals for the ith
gene is denoted by γi. This parameter is the main
addition to the usual formula for the multispecies
coalescent. We only deal with tetraploids here, so γi
consists of transpositions (‘flips’) of two sequences.
The sequence data for the ith gene is denoted by yi.
We set τ = (τ1, ...τG), and similarly for α, γ, y.

2.1 Model

The formula for the posterior density for the
AlloppNET model is similar to that used in [10] and
is given by

f(W, θ, τ, α, γ|y) ∝ fW (W |λ)fλ(λ)×
fθ(θ|η)fη(η)×
fγ(γ)×
G∏
i=1

fτ (τi|MW , θ, γi)×

G∏
i=1

Pr(yi|τi, αi). (1)

The network prior is fW (W |λ)fλ(λ). The choice
of this prior poses some problems and is described
in a separate section.
The population size prior fθ(θ|η)fη(η) is for the

vector of population size parameters θ. There is a
mapping from θ to values at nodes in the network,
and to just after each hybridization event. There
are 3d+ 4m+ h− 2 parameters; note that h varies.
Details of the mapping are in the SI. TODO. The
population sizes are assumed to vary linearly along
edges in the network, except that a instantaneous
change is allowed at hybridization events. In the
analyses done in this paper, the priors for θ used

were similar to those typically used by *BEAST.
An independent gamma distribution is assumed for
each component of θ. The shape parameter is 4
for the populations at the tips, 1 for just after hy-
bridizations, and 2 for the rest. The scale parameter
for all these gamma distributions is the hyperparam-
eter η. The hyperprior fη for η is described later.
The permutation prior fγ(γ) is a discrete distri-

bution on the set of sequence assignments. This
is assumed to be uniform here, and thus could be
omitted without affecting the inference.
The term fτ (τi|MW , θ, γi) provides the probabil-

ity of τi, when permuted by γi, fitting into the multi-
labeled species tree MW with population sizes de-
termined by θ. The value of γi determines how the
sequences for the ith gene are assigned to tips in
MW . Note that this probability does not depend
on αi. Apart from this extra complexity due to the
permutations, the value of fτ (τi|MW , θ, γi) is given
by the multispecies coalescent, as used in [18], [6]
and elsewhere.
The term Pr(yi|τi, αi) is the probability of the

data for the ith gene given the ith gene tree and
other parameters αi. Regarded as a likelihood, it
is the usual ‘Felsenstein likelihood’. Here αi con-
tains the substitution model parameters, branch
rate model parameters, and site rate heterogene-
ity model parameters for the ith gene tree. In this
paper, we used the HKY substitution model, and
assumed strict clock branch rates, and no site rate
heterogeneity. The clock rate for one gene was fixed
to 1.0, and the others were estimated.
The priors for the population parameter η and

the parameter λ appearing in the network prior,
and the priors for relative clock rates were diffuse
lognormals.

2.2 Network Prior

There are two difficulties. Firstly, there is very lit-
tle empirical evidence to guide the choice of prior.
Secondly, there is little in the way of theory about
probability densities on networks, especially when
the number of nodes can vary as it does here. The
situation can be contrasted with that of species de-
limitation (eg [20]) where species trees with different
numbers of nodes are considered. In that case, the
theory of birth-death process provides normalized
densities for species trees of different sizes which can
then be used to determine the Hasting ratios in the
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MCMC algorithm. But for allopolyploid networks
no such densities are known. We therefore resort to
writing down a formula for an unnormalized density
for each possible size of network, and estimating the
properties of the prior by sampling from it.
There are

∑h
i=1(mi−1) = m−h internal nodes in

the allotetraploid trees. There are h hybridization
times, and the diploid history has d+2h−1 internal
nodes. The total number of parameters (node times
and hybridization times) which are operated on by
the reversible jumps is thus n := d + m + 2h − 1.
If the ratios between different models (different h)
is to be the same regardless of λ, then the density
must reflect this. The formula we use is(

7
√
d
)−h

λn exp
(
−λ

∑n

i=1
ti

)
(2)

where the ti are all the node times and hybridiza-
tion times. The factor (7

√
d)−h was chosen ex-

perimentally so that the marginal distribution over
h ∈ {1, . . . ...m} was approximately uniform. Note
that λ something like a diversification rate.

3 MCMC implementation

The network can be represented as a set of al-
lotetraploid subtrees and a ‘diploid history’, as in
Figure 2. The diploid history is an ordinary tree
with some tips (‘hybridization tips’) having nonzero
times. There is one pair of hybridization tips for
each hybridization and both tips have the same
time, which is the time at which hybridization oc-
curred and hence also the time of origin for an allote-
traploid subtree. We will also refer to the external
branches in the diploid history which lead to the
hybridization tips as the ’legs’ of the corresponding
allotetraploid subtree.
In this section we describe the MCMC operators

(moves) used, and the choice of initial state. There
are five novel types of move which are particular to
allopolyploid networks:

1. Change a hybridization time.
2. Change an allotetraploid subtree, tipwards of

the hybridization
3. Change the diploid history, rootwards of hy-

bridizations.
4. Change the number of allotetraploid subtrees,

that is, the number of hybridizations.

a b cz y x w v u

Figure 2: Network with three allotetraploid subtrees
(pairs of thin black lines) and the diploid history (thick
gray lines). The allotetraploid subtrees have sets {z},
{x,y}, and {w,v,u} of extant species. The diploid his-
tory has extant species a,b, and c, plus three pairs of
tips which each lead to an allotetraploid subtree.

5. Change the assignment of sequences within
polyploid individuals.

The first is straightforward. The next two have
much in common and are described next.

3.1 Allotetraploid subtrees and
diploid history

Like *BEAST, we use a MCMC move for the species
tree based on the ideas of [16]. One reason for using
this move is that it can be constrained to keep the
species tree compatible with the gene trees. This
MCMC move randomly assigns ‘left’ and ‘right’ la-
bels to the immediate descendants of each node,
to produce an oriented tree [4] and then alters a
node height. In our situation this must take into
account the assignment of sequences within allote-
traploid individuals. Otherwise, within a single al-
lotetraploid subtree the situation is very similar to
that in *BEAST.
The same type of move can be adapted to deal

with the diploid history. There are three types of
constraint on the new height. Firstly, there are con-
straints from the gene trees as in the tetraploid sub-
trees, but the calculation is more complex. In order
to calculate the sets of sequences belonging to the
left and right subtrees (in the MUL-tree) of a par-
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ticular node in the diploid history, it is necessary
to visit the tetraploid subtrees which are attached
to the hybridization tips of the diploid history. Sec-
ondly, there are lower bounds on the new height due
to the fact that the hybridization tips have nonzero
height. In the oriented tree, this amounts to en-
suring that the new height does not become smaller
than either of the heights of adjacent nodes. (Nodes
adjacent to internal nodes are always tips in the
left-right ordering.) Thirdly there are constraints
to keep the root as a diploid. If node to change
height is the root, and the second highest node is to
left or right of all diploids, then the root must stay
the root: there is a lower limit which is the height
of second highest node. If the node to slide is not
the root, and is to left or right of all diploids, then
it must not become the root: there is an upper limit
which is the root height.

3.2 The number of hybridizations

This is the most complex move. Sampling all val-
ues of h can be done by repeatedly changing h to
h − 1 or h + 1, and that can be done by splitting
one tetraploid subtree into two and merging two
into one. The difficult part is making the moves re-
versible, so that the probability of a move going from
one network state A to another B is balanced by a
reverse move. When the MCMC move for changing
h is chosen, a split or a merge is chosen with equal
probability. If a split is chosen, but no splits are
possible, no move is made; the same network state
is sampled again. Likewise, if a merge is chosen,
but no merges are possible, the same network state
is sampled again.
Splitting (going left to right in the top section of

Fig 3). Any tetraploid subtree with more than one
tip can be split. One, T, is chosen at random. The
two child nodes of the root of T become the roots
of the two new tetraploid subtrees. The child nodes
are not treated symmetrically in the move, so both
orderings of the child nodes is treated as candidates.
There are thus twice as many candidate splits as
tetraploid subtrees. The steps are:

1. Split T into T1 and T2 and create a new
hybridization height for T1 between the root
height of T1 and the root height of T.

2. Create a new hybridization height for T2 be-
tween the root height of T2 and the root height

of T. Create two ancestor nodes for the hy-
bridization tips, one re-using the root height of
T and the other between this time and the min-
imum of the limits imposed by the gene trees
and the height of the node that will become its
ancestor node.

3. Join up the topology in the diploid history.
Note that they could join the diploid history in
many ways but a particular way is always cho-
sen, so that the two new subtrees ‘share legs’
as shown. Note also that it is necessary to keep
track of which of the two ‘copies’ of a tetraploid
subtree is which (ie, the left leg of one must cor-
respond to the left leg of the other).

The most difficult parameter is the new node height
when splitting, which is below the root height of the
subtree. This can conflict with gene trees, so the
sets of (species,sequence) pairs have to be found for
the two child nodes of the new node, and the gene
trees examined to find the most recent coalescence
that conflicts with the new node.

T1

T2

T1 T2

Figure 3: MCMC moves to change the number of
tetraploid subtrees. Top: splitting. Bottom: merging.
The two gray horizontal lines show times that are re-
used. Gray crosses indicate times that are about to
disappear. Gray stars show times which have just been
created.

Merging (going right to left in the bottom section
of Fig 3) must be the reverse of splitting. So two
tetraploid subtrees can only merge if they have a
configuration like that in the figure, ie ‘sharing legs’.
It is not necessary that the two nodes at the bottom
of the figure be different. A list of possible pairs of
tetraploid subtrees is made, and if there any suitable
pairs, one pair T1,T2, is chosen at random, and the
merge is carried out. The steps are:
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1. Merge T1 and T2 into T. The root height of T
becomes the height of the most recent ancestor
to a hybridization tip.

2. Remove the hybridization tips for T1 from
the diploid history. This loses a hybridization
height and a node height. The latter requires
finding the limit from gene trees for Hastings
ratio.

3. Give the hybridization tips for T1 new heights
below the root height of T, and join up.

Note that the limit from gene trees must be calcu-
lated for the lost node height (as when splitting), in
order to calculate the Hastings ratio.
We use the theory developed in [5] to calculate

the Hastings ratios for splitting and merging moves.
Consider a splitting move; the merging case is simi-
lar. Then equation (7) of [5] provides the acceptance
ratio

min

{
1,

p(S, θ(S)|y)j(S, θ(S))qS(u
(S))

p(M, θ(M)|y)j(M, θ(M))qM (u(M))
J

}
(3)

where

J =

∣∣∣∣ ∂(θ(S), u(S))

∂(θ(M), u(M))

∣∣∣∣
is the Jacobian and S (for ‘split’) and M (for
‘merged’) replace Green’s 1 and 2. Here y is
the data, and p(S, θ(S)|y) and p(M, θ(M)|y) the
usual Bayesian posteriors. The term j(S, θ(S)) gives
the probability of choosing the splitting move and
j(M, θ(M)) of choosing the reverse merging move.
The term θ(S) is a vector of node and hybridiza-
tion times for the network with the split case, and
θ(M) is a vector of node and hybridization times for
the network with the merged case. The vectors u(S)

of length 3 and u(M) of length 1 provide the extra
parameters created when doing the jump. The func-
tion qS is the density of the distribution from which
u(S) is sampled; likewise qM .
In our case u(S) and u(M) can be generated by in-

dependent sampling from the uniform distribution
on [0, 1] for each dimension. In this case qS(u

(S))
and qM (u(M)) are both 1 and can be omitted from
the formula. The new parameters are then derived
from these values, as functions of the other old pa-
rameters. In the present case, all these function are
linear functions mapping [0, 1] to a suitable range,
the range being some function of the other param-
eters θ(S) or θ(M). The probabilities of the moves

being chosen, namely j(M, θ(M)) and j(S, θ(S)) must
also be taken into account.

When the number of hybridizations changes, the
number of population parameters also changes. It
increases by one for each hybridization. So in a
split a new population parameter is added, and in
a merge one is removed. When one is added, it
is sampled from the prior for the population. The
contribution to the Hastings ratio is calculated from
the value of the density of the population prior at
the new parameter value when splitting, or at the
lost value when merging.

3.3 Assignment of sequences within
allotetraploid individuals

A uniform prior on the possible assignments is used,
so the Hastings ratios are all 1. The reassignment
moves need to visit all possible ‘flips’ for each gene in
each tetraploid individual. This is easy to arrange in
a mathematical sense. The only difficulty is choos-
ing combinations of flips which have good mixing
properties. As usual with MCMC algorithms, this
requires experimentation.

Three types of move have been implemented. The
first flips the assignment of a single gene in a sin-
gle individual. The second works within a single
gene tree, and chooses a random node within it, and
roughly speaking, flips a clade of individuals. The
details are in the code.

The third type of move was introduced to avoid
the MCMC chain getting stuck in a particular sit-
uation. The merging move which reduces the num-
ber of hybridizations by one, requires the left legs
to be ‘shared’, and the right legs to be shared; left
leg shared with right leg will not do. However the
network can get into a situation where the legs are
‘reversed’ and the sequence assignments of the genes
at the tips of the two candidate are opposite to one
another. This makes a state which may be very dif-
ficult to leave. The third move flips sequence assign-
ments of all genes of all individuals of all species in
a tetraploid subtree, and switches the legs around,
swapping left and right. This takes the network to
an equivalent state with the same likelihood, but
one from which the merging move can operate.
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3.4 Initial state

A random initial state for the species network is
chosen as follows.

1. The tetraploid species are partitioned into one
or more groups using the Chinese restaurant
process [11,17].

2. Trees from a Yule process are generated for each
of the groups of tetraploid species.

3. The diploid history is constructed in a manner
similar to the Yule process working backwards
in time, with some modifications. Each diploid
species is a tip and there are two hybridization
tips for each tetraploid subtree. Two subtrees
are repeatedly chosen from those available and
joined into a subtree. When two nodes are se-
lected for joining, the choice is constrained so
that the diploids do not all merge while there
are still tetraploids left to merge. Also, the
height of the root of the new subtree has to
be made earlier than either of the nodes chosen
for joining (which would not happen automati-
cally, since the hybridization tips have nonzero
height).

4 Simulations

All genes have length 500 (except in the case of
no data). Population sizes are 100,000 individu-
als (hence 200,000 gene copies per diploid genome)
at the tips, and at rootward ends of branches,
and 200,000 individuals at tipward ends of inter-
nal branches and at the root. Strict clock branch
rates, no site rate heterogeneity, and equal clock
rates for all genes were assumed. The HKY sub-
stitution model was assumed and parameter kappa
was set to 3, and the frequencies set to .3 for A and
T, and .2 for C and G (Seq-Gen was called with
parameters -t3.0 -f0.3,0.2,0.2,0.3). Priors on
population size scaling factor η, the relative muta-
tion rates of genes, and λ are all diffuse log-normals.

Three sets of simulations were done, Firstly, the
program was run with no data in order to assess the
prior. Various numbers of diploid and tetraploid
species were tested. Secondly, a large number of
simulations were run for the three scenarios shown
in Figure 4. These were chosen to have similar
topologies but different numbers of hybridizations.

Different numbers of genes (G = 1, 3, 9), individu-
als per species (N = 1, 3, 9), and five mutation rates
(T = 5e−9, 1e−8, 2e−8, 4e−8, 8e−8 mutations per
site per generation) were tested. Note that since the
root height is kept the same in terms of substitutions
when the mutation rate is varied, different values of
the mutation rate mean different numbers of gen-
erations from root to tip. When T = 5e − 9, then
root height is .012/5e − 9 = 2,400,000 generations.
When T = 8e− 8, the root height is 150,000 gener-
ations. Large values of T result in greater amounts
of incomplete lineage sorting. The third set of simu-
lations used a single scenario with 6 diploid species
and 7 tetraploid species, as shown in Figure 5.

MCMC chains of up to 30M generations were
used; for the N = 9, G = 9 case a few repli-
cates failed to converge within 10M. Note that al-
though there are only 5 species in scenarios D,E,
and F, there are 8 diploid genomes and therefore
8×9×9 = 648 sequences. These BEAST runs took
around 6 hours each using one core on a desktop
computer.
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Figure 4: Scenarios D,E,F: the true MUL-trees. D has
one hybridization; E has two; and F has three. Heights
are in expected numbers of substitutions.

4.1 Empirical data

Silene.

5 Results

5.1 Distances for multi-labeled trees

In order to summarize the accuracy of the results
it useful to have some definitions of distances for
multi-labeled trees. We start with three varia-
tions of the Robinson-Foulds distance [19] for binary
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Figure 5: The true MUL-tree for a scenario with
6 diploid species labelled a,b,c,d,e,f and 7 tetraploid
species comprising clades {t,u}, {v}, and {w,x,y,z},
arising from 3 hybridizations. Heights are in expected
numbers of substitutions.

rooted trees. The first is Dtop which purely topo-
logical; the other two, Dmiss and Dtotal, include
branch lengths. They are defined by the following
algorithm. Given two binary rooted trees T1 and T2

with the same tip labels:

1. For each node i in Tj (j ∈ {1, 2}), find the clade
Cji and the length of the branch Bji leading to
Cji.

2. Set Dtop = 0, Dmiss = 0 and Dtotal = 0.

3. For each clade Cji which does not have a match
in the other tree, add 1 to Dtop, and add Bji

to both Dmiss and Dtotal.

4. For each clade Cji which does have a match Ckl

(for some l and k = 3−j) in the other tree, add
|Bji − Ckl| to Dtotal.

In order to extend this to multi-labeled trees M1

and M2, we follow [9] and define distances Dtop,
Dmiss and Dtotal by considering all possible con-
sistent relabellings of M1 and M2 and finding the
minimum distance over all such relabellings. For
the results here, this amounts to giving each pair of

tips in M1 an arbitrary labeling to distinguish them
(say ‘A’ and ‘B’), and then labeling each pair of tips
in M2 with either (‘A’,‘B’) or (‘B’,‘A’). Thus, in or-
der to evaluate a distance for a pair multi-labeled
trees with m allotetraploids, 2m ordinary Robinson-
Foulds-type distances must be evaluated.

Note that Dmiss = 0 implies that Dtop = 0, and
that Dtotal ≥ Dmiss always. Also note that it is
possible for different networks to correspond to the
same multi-labeled tree; an example is shown in Fig-
ure 6. If there is an exact coincidence of node times
of the two most recent diploid speciations in the sec-
ond network, there is no way of distinguishing the
two networks using the type of data used in this pa-
per. If such exact coincidences do not occur, Dmiss

will be nonzero if a incorrect multi-labeled tree was
inferred, although Dtop may be zero.

a bz y a bz y a bz yzy

Figure 6: Two networks with the same multi-labeled
tree.

5.2 Simulations

With no data, the prior given by equation 2 is sam-
pled. Some examples of the marginal distribution
for m are shown in Figure 7. It is fairly uniform
over m. This is the case for the range of numbers of
diploid and tetraploid species considered here, but
not for much larger numbers species.

Scenarios D,E,F. Results are shown in Figure 8.
As expected, accuracy increases with G, N , and de-
creases with T . In general, increasing G is more
useful than increasing N . The dependence on T is
less than might be expected, at least for N = 3
and N = 9. It is worth noting that estimates of m
are often correct even when the topology is wrong
(results not shown).

Scenario J.
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Figure 7: Estimates of the marginal distribution for
the number of hybridizations m in the prior. There
are 2 tetraploid species in the top row, and 8 in the
bottom two. There are 2 diploid species in the left
column and 8 in the right column.

5.3 Empirical data

Results for Silene data are shown in Figure 9. There
is little signal in this data, and the posterior shows
significant probability for both h = 3 (about 2/3)
and h = 2 (about 1/3). In the latter case, Ss and
Si arise from speciation after hybridization. In the
figure, two MUL trees are shown, each conditional
on thes possibilities.

6 Discussion

Mixing problems.
Heterozygosity. 6 assignments of 4 seqs from al-

lotet indiv.
Hexaploids, etc.
Distances for multi-labeled trees.
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Figure 8: Results for scenarios D,E,F. The bars show
mean values over 10 replicates for Dtotal values (gray)
and Dmiss values (black). Each group of five bars
shows results for different mutation rates. Small open
squares indicate cases Dtop = 0 for all ten replicates.

9



0.001

St0

Suw

Salsv

Si0

Ss1

Ss0

Si1

St1

0.08

0.12

0.12

0.42

0.2

0.5

0.001

Salsv

Ss1

Suw

Si1

St1

Si0

Ss0

St0

1

0.35

0.12

1

0.36

0.29

Figure 9: Results for Silene data. The MUL-tree on
the left is conditonal on 3 hybridizations, and the one
on the right is conditonal on 2 hybridizations.
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