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1 Rate Matrix Prior

My convention is to have row vectors (of state frequencies) on the left acted on by transition matrices on
the right. This seems to be the convention for Markov chains, although the opposite convention is generally
more common. Rate matrices have rows summing to zero; transition matrices have rows summing to one.
It is usual to impose the condition that the non-diagonal elements of a rate matrix sum to one, but I will
work with unnormalised rate matrices.

For nucleotides, an arbitrary 12-parameter rate matrix, which I will call a non-time reversible, or NTR rate
matrix, can be written as follows. Note that the numbering has wi diagonally opposite to wi+6. The diagonal
entries follow from the fact that rows sum to zero.

To: A G C T
From

A - w1 w2 w3

G w7 - w4 w5

C w8 w10 - w6

T w9 w11 w12 -

Let vi = log(wi) for 1 ≤ i ≤ 12.

The GTR rate matrix can be written as follows ([1] p205).

To: A G C T
From

A - πGa πCb πT c
G πAa - πCd πTe
C πAb πGd - πT f
T πAc πGe πCf -

where a, ...f are arbitrary positive numbers. Note that there are 10 parameters but there is also a redundancy,
since if all of πA, πG, πC, πT are multiplied by x and all of a, ...f are multiplied by x−1 the same rate matrix
is produced. The dimensionality of the unnormalised GTR rate matrix is therefore 9. Usually πA, πG, πC, πT

are normalised to sum to one, so that they can be interpreted as state frequencies at equilibrium, but only
the form of the above GTR rate matrix is of concern here, not the meaning of the parameters. By comparing
the NTR and GTR rate matrices, three conditions can be found relating ratios of the wi, which become
sums and differences of the vi.

v1 − v7 + v8 − v2 + v4 − v10 = 0 (1)

v7 − v1 + v2 − v8 + v11 − v5 + v6 − v12 = 0 (2)

v7 − v1 + v3 − v9 + v10 − v4 + v12 − v6 = 0 (3)
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The HKY rate matrix can be written as follows ([1] p201).

To: A G C T
From

A - πG(a + b) πCb πT b
G πA(a + b) - πCb πT b
C πAb πGb - πT (a + b)
T πAb πGb πC(a + b) -

where a = αR/πR = αY /πY in Felsenstein’s notation. From this, four further conditions can be found,
namely

v8 = v9, v10 = v11, and v2 = v4 (4)

v7 − v8 + v12 − v4 = 0 (5)

The two-parameter Kimura rate matrix ([1] p196), which I’ll denote as KIM, is

To: A G C T
From

A - b a a
G b - a a
C a a - b
T a a b -

From this, three further conditions can be found, namely

v9 = v11, v2 = v3, and v4 = v10 (6)

Equations (1) - (6) are linear constraints of form
∑

λivi = 0. It can be shown that these 3+4+3=10
linear constraints are all independent. The four nested models therefore become four real vector spaces
VKIM < VHKY < VGTR < VNTR of dimensions 2, 5, 9 and 12. It is now straightforward to calculate
the squared Euclidean distances dGTR from an arbitrary rate matrix R to the nearest GTR rate matrix,
dHKY from that point in VGTR to the nearest HKY rate matrix, and dKIM from that point in VHKY to
the nearest KIM rate matrix. The squared Euclidean distance from R to the nearest HKY rate matrix is
then dGTR + dHKY , and to the nearest KIM rate matrix it is dGTR + dHKY + dKIM . By weighting the
components, a prior such as exp(−(wGTRdGTR + wHKY dHKY + wKIMdKIM)) can express a statement that
a rate matrix R is likely to be very close to a GTR rate matrix, and probably quite close to a HKY rate
matrix, and ‘no further opinion’ about closeness to a KIM rate matrix (by using large wGTR, moderate
wHKY , wKIM = 0) and similar statements.

I have spelled out the details for the particular models GTR, HKY, KIM because they are popular and have
a neat mathematical structure. The general idea could of course be applied to any set of nested models, but
the vector subspaces VKIM , VHKY , VGTR become arbitrary manifolds, and then calculating a distance to the
nearest point in one could become more complex and the meaning of the distance harder to understand.

A prior like this removes the need to make a categorical decision about which substitution model is appro-
priate for a particular analysis, using simpler models for smaller data sets and so on. A Bayesian approach
with a well designed prior should be able to deal with differing amounts of data automatically.

The strand-symmetric rate matrix is

To: A G C T
From

A - a b c
G f - d e
C e d - f
T c b a -

Further details to do...
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2 Independence of the constraints

This is a sort of appendix, and isn’t very interesting.

2.1 Independence of the GTR constraints

From (1), (2), (3), all the vi can be expressed in terms of these nine: v1, v2, v3, v4, v5, v6, v7, v9, v10 as follows.
From (1)

v8 = −v1 + v2 − v4 + v7 + v10 (7)

From (3)

v12 = v1 − v3 + v4 + v6 − v7 + v9 − v10 (8)

From (2)
v11 = v1 − v2 + v5 − v6 − v7 + v8 + v12

Substituting for v8 and v12 gives

v11 = v1 − v2 + v5 − v6 − v7 − v1 + v2 − v4 + v7 + v10 + v1 − v3 + v4 + v6 − v7 + v9 − v10

which simplifies to

v11 = v1 − v3 + v5 − v7 + v9 (9)

2.2 Independence of the HKY constraints

Assume (1), (2), (3), (4) and (5). Now all the vi can be expressed in terms of these five: v1, v2, v3, v6, v9 as
follows. Adding (2) and (3) gives

v5 − v3 = 2v7 − 2v1 + v2 − v8 − v9 + v10 − v4 + v11 (10)

Using (4) this can be written as

v5 − v3 = 2(v7 − v1 + v2 − v8 − v4 + v10) (11)

and the right hand side is zero from (1). So

v5 = v3 (12)

Also using v4 = v2 from (4) and (1),

v7 − v1 − v8 + v10 = 0 (13)

Subtracting (3) from (2) and using (4), (5) and (12) gives

v2 − v3 + v6 − v12 = 0 (14)

We have v4 = v2, v5 = v3, v8 = v9, and it remains to express v7, v10, v11, and v12 in terms of v1, v2, v3, v6, v9.
From (14)
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v12 = v2 − v3 + v6 (15)

Substituting this into (5) gives

v7 = v9 − v3 + v6 (16)

From (13) and (15)

v10 = v1 + v3 − v6 (17)

and since

v10 = v11 (18)

from (4), we are done.

2.3 Independence of the KIM constraints

Assume (1), (2), (3), (4), (5) and (6). Now all the vi can be expressed in terms of v1 and v2 as follows.

Using (12), (18) along with (4), (5) and (6) it follows that

v3 = v4 = v5 = v8 = v9 = v10 = v11 = v2 (19)

Now from (17) and (19) we have v7 = v6 and from (15) and (19) we have v12 = v6. From (2) and (19) it
then follows that v7 = v1, so

v6 = v7 = v12 = v1 (20)
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