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1 Introduction

This note is aimed at providing tree priors for Bayesian phylogenetic analysis. The model is a standard
birth-death process which produces a binary tree, followed by random sampling of the tips. Assume that
at some time ¢; in the past a speciation occurred, and that this forms the root of the tree that the analysis
attempts to recover: it is the last common ancestor of the species in the sample, so both lineages starting at
t; must leave at least one species in the sample. A birth-death process with speciation rate A and extinction
rate p starting at this root produces some number n species at the present time. The present time is taken
to be zero, and times are measured ‘backwards’ so that ¢; > 0. After the birth-death process reaches time
zero, the n species are then sampled at a rate p < 1, which produces a sample of size s.

This is clearly an idealised account of how a sample of species is chosen for a real phylogenetic analysis.
To carry it out strictly, the researcher would need to identify a monophyletic clade (how?) and a number
p <=1, and then accept or reject each species from the clade at random using p, and then analyse whatever
list of species this produced.

2 Calculation

In [1], equation (3) gives an expression for the joint probability density for the node times after ¢;, namely
to, ..., ts_1, given t1, s, p, A, and p. Rewriting their formula, this is
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where p;(z) is the probability that a lineage at time z leaves exactly ¢ species in the sample, after the birth-
death process and sampling. Only p; (x) appears in the above equation, but I use the same notation for all
1 > 0. The rest of their analysis sets t; = 1.0 and makes inferences about A and y relative to ¢;. For more
general phylogenetic analysis, a formula for the density of all nodes including the root is more useful, and
what is missing is therefore a density for ¢; given s, p, A, and p. A calculation of the value for this follows,
starting with a calculation of the p;(x) fori > 1. Let ¢;(x) be the probability that a lineage at time x leaves
exactly 7 species at present, after the birth-death process, but before sampling. A standard result from the
theory of the birth-death process (see [2], or one of many books on probability) gives, for 7 > 1,
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If j species are produced by the birth-death process, then the probability that ¢ ‘survive’ the sampling is
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Substituting for ¢;(x) and rearranging,
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The sum can be recognised as an expansion of °(1 — 1) =1, where n = (1 — p)a(z), so

pi(x) = qi(@)a(z) " p (1 — p) (1 = p)a(@)]'[L = (1 = p)a(a)] "
which simplifies to
() = Pa@a@)
P = T (1= pal@)

Substituting for ¢; (z) and a(x) and more rearranging gives
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Up to this point, the results are standard, though I have not been able to find a reference I can quote directly
for the values of p;(x). Nee et al [3] do similar (and more general) calculations.

From here on, errors are more likely!

Now, the probability that the root node produces 7 species in the sample from one lineage and (s — )
from the other is p;(t1)ps_i(t1), which is p1 (t1)%8(t1)*~2 for all 4, and since we require at least one species
from each lineage, this needs to be summed from i = 1 to s — 1, that is, multiplied by (s — 1) to give
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This can be regarded as a likelihood function L(t1]s; p, A, ) for ¢1. T assume that before observing the
sample (before knowing the number of species) the last common ancestor is equally likely to have been any
time in the past. That is, an improper uniform prior for ¢; on [0, 00) is assumed. Then the posterior density
for ¢; is proportional to the right hand side of equation 2. This can be multiplied by equation (1) to provide a
density for all the node times including the root. Note that the term raised to the power of (s —2) in equation
(1)is A\/B(t1), so this density is
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where ¢(p, A, 11, ) is a normalisation constant. In Bayesian phylogenetic analysis, p, A, and p are generally
parameters which will be estimated along with the tree, so ¢(p, A, 1, $) is required (although the dependence
on s is not needed) and this can be found as follows.
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where the inner integral is taken with respect to ¢a, ..., ts—1 over the region 0 < to, ..., ts—1 < t7. It is easily
shown that the derivative of 5(x)/) is py (), so this inner integral is 5(x)*~2A~(5=2) and
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This one-dimensional integral could be evaluated numerically. In the case of a pure birth process where
u=0and p=1,itis
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so that in this case
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